210 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file     LPSolver.cpp
 | |
|  * @brief    
 | |
|  * @author   Duy Nguyen Ta
 | |
|  * @author   Ivan Dario Jimenez
 | |
|  * @date     1/26/16
 | |
|  */
 | |
| 
 | |
| #include <gtsam_unstable/linear/LPSolver.h>
 | |
| #include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam_unstable/linear/LPInitSolverMatlab.h>
 | |
| 
 | |
| namespace gtsam {
 | |
| LPSolver::LPSolver(const LP &lp) :
 | |
|     lp_(lp) {
 | |
|   // Push back factors that are the same in every iteration to the base graph.
 | |
|   // Those include the equality constraints and zero priors for keys that are
 | |
|   // not in the cost
 | |
|   baseGraph_.push_back(lp_.equalities);
 | |
| 
 | |
|   // Collect key-dim map of all variables in the constraints to create their
 | |
|   // zero priors later
 | |
|   keysDim_ = collectKeysDim(lp_.equalities);
 | |
|   KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
 | |
|   keysDim_.insert(keysDim2.begin(), keysDim2.end());
 | |
| 
 | |
|   // Create and push zero priors of constrained variables that do not exist in
 | |
|   // the cost function
 | |
|   baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
 | |
| 
 | |
|   // Variable index
 | |
|   equalityVariableIndex_ = VariableIndex(lp_.equalities);
 | |
|   inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
 | |
|   constrainedKeys_ = lp_.equalities.keys();
 | |
|   constrainedKeys_.merge(lp_.inequalities.keys());
 | |
| }
 | |
| 
 | |
| GaussianFactorGraph::shared_ptr LPSolver::createZeroPriors(
 | |
|     const KeyVector &costKeys, const KeyDimMap &keysDim) const {
 | |
|   GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
 | |
|   for (Key key : keysDim | boost::adaptors::map_keys) {
 | |
|     if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
 | |
|       size_t dim = keysDim.at(key);
 | |
|       graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
 | |
|     }
 | |
|   }
 | |
|   return graph;
 | |
| }
 | |
| 
 | |
| LPState LPSolver::iterate(const LPState &state) const {
 | |
|   // Solve with the current working set
 | |
|   // LP: project the objective neg. gradient to the constraint's null space
 | |
|   // to find the direction to move
 | |
|   VectorValues newValues = solveWithCurrentWorkingSet(state.values,
 | |
|       state.workingSet);
 | |
| 
 | |
|   // If we CAN'T move further
 | |
|   // LP: projection on the constraints' nullspace is zero: we are at a vertex
 | |
|   if (newValues.equals(state.values, 1e-7)) {
 | |
|     // Find and remove the bad inequality constraint by computing its lambda
 | |
|     // Compute lambda from the dual graph
 | |
|     // LP: project the objective's gradient onto each constraint gradient to
 | |
|     // obtain the dual scaling factors
 | |
|     //	is it true??
 | |
|     GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
 | |
|         newValues);
 | |
|     VectorValues duals = dualGraph->optimize();
 | |
|     // LP: see which inequality constraint has wrong pulling direction, i.e., dual < 0
 | |
|     int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
 | |
|     // If all inequality constraints are satisfied: We have the solution!!
 | |
|     if (leavingFactor < 0) {
 | |
|       // TODO If we still have infeasible equality constraints: the problem is
 | |
|       // over-constrained. No solution!
 | |
|       // ...
 | |
|       return LPState(newValues, duals, state.workingSet, true,
 | |
|           state.iterations + 1);
 | |
|     } else {
 | |
|       // Inactivate the leaving constraint
 | |
|       // LP: remove the bad ineq constraint out of the working set
 | |
|       InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|       newWorkingSet.at(leavingFactor)->inactivate();
 | |
|       return LPState(newValues, duals, newWorkingSet, false,
 | |
|           state.iterations + 1);
 | |
|     }
 | |
|   } else {
 | |
|     // If we CAN make some progress, i.e. p_k != 0
 | |
|     // Adapt stepsize if some inactive constraints complain about this move
 | |
|     // LP: projection on nullspace is NOT zero:
 | |
|     // 		find and put a blocking inactive constraint to the working set,
 | |
|     // 		otherwise the problem is unbounded!!!
 | |
|     double alpha;
 | |
|     int factorIx;
 | |
|     VectorValues p = newValues - state.values;
 | |
|     boost::tie(alpha, factorIx) = // using 16.41
 | |
|         computeStepSize(state.workingSet, state.values, p);
 | |
|     // also add to the working set the one that complains the most
 | |
|     InequalityFactorGraph newWorkingSet = state.workingSet;
 | |
|     if (factorIx >= 0)
 | |
|       newWorkingSet.at(factorIx)->activate();
 | |
|     // step!
 | |
|     newValues = state.values + alpha * p;
 | |
|     return LPState(newValues, state.duals, newWorkingSet, false,
 | |
|         state.iterations + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| GaussianFactorGraph::shared_ptr LPSolver::createLeastSquareFactors(
 | |
|     const LinearCost &cost, const VectorValues &xk) const {
 | |
|   GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
 | |
|   KeyVector keys = cost.keys();
 | |
| 
 | |
|   for (LinearCost::const_iterator it = cost.begin(); it != cost.end(); ++it) {
 | |
|     size_t dim = cost.getDim(it);
 | |
|     Vector b = xk.at(*it) - cost.getA(it).transpose(); // b = xk-g
 | |
|     graph->push_back(JacobianFactor(*it, eye(dim), b));
 | |
|   }
 | |
| 
 | |
|   return graph;
 | |
| }
 | |
| 
 | |
| VectorValues LPSolver::solveWithCurrentWorkingSet(const VectorValues &xk,
 | |
|     const InequalityFactorGraph &workingSet) const {
 | |
|   GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
 | |
|   workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
 | |
| 
 | |
|   for (const LinearInequality::shared_ptr &factor : workingSet) {
 | |
|     if (factor->active())
 | |
|       workingGraph.push_back(factor);
 | |
|   }
 | |
|   return workingGraph.optimize();
 | |
| }
 | |
| 
 | |
| boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(Key key,
 | |
|     const InequalityFactorGraph &workingSet, const VectorValues &delta) const {
 | |
|   // Transpose the A matrix of constrained factors to have the jacobian of the
 | |
|   // dual key
 | |
|   TermsContainer Aterms = collectDualJacobians < LinearEquality
 | |
|       > (key, lp_.equalities, equalityVariableIndex_);
 | |
|   TermsContainer AtermsInequalities = collectDualJacobians < LinearInequality
 | |
|       > (key, workingSet, inequalityVariableIndex_);
 | |
|   Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
 | |
|       AtermsInequalities.end());
 | |
| 
 | |
|   // Collect the gradients of unconstrained cost factors to the b vector
 | |
|   if (Aterms.size() > 0) {
 | |
|     Vector b = zero(delta.at(key).size());
 | |
|     Factor::const_iterator it = lp_.cost.find(key);
 | |
|     if (it != lp_.cost.end())
 | |
|       b = lp_.cost.getA(it).transpose();
 | |
|     return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
 | |
|   } else {
 | |
|     return boost::make_shared<JacobianFactor>();
 | |
|   }
 | |
| }
 | |
| 
 | |
| InequalityFactorGraph LPSolver::identifyActiveConstraints(
 | |
|     const InequalityFactorGraph &inequalities,
 | |
|     const VectorValues &initialValues, const VectorValues &duals) const {
 | |
|   InequalityFactorGraph workingSet;
 | |
|   for (const LinearInequality::shared_ptr &factor : inequalities) {
 | |
|     LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
 | |
| 
 | |
|     double error = workingFactor->error(initialValues);
 | |
|     // TODO: find a feasible initial point for LPSolver.
 | |
|     // For now, we just throw an exception
 | |
|     if (error > 0)
 | |
|       throw InfeasibleInitialValues();
 | |
| 
 | |
|     if (fabs(error) < 1e-7) {
 | |
|       workingFactor->activate();
 | |
|     } else {
 | |
|       workingFactor->inactivate();
 | |
|     }
 | |
|     workingSet.push_back(workingFactor);
 | |
|   }
 | |
|   return workingSet;
 | |
| }
 | |
| 
 | |
| std::pair<VectorValues, VectorValues> LPSolver::optimize(
 | |
|     const VectorValues &initialValues, const VectorValues &duals) const {
 | |
|   {
 | |
|     // Initialize workingSet from the feasible initialValues
 | |
|     InequalityFactorGraph workingSet = identifyActiveConstraints(
 | |
|         lp_.inequalities, initialValues, duals);
 | |
|     LPState state(initialValues, duals, workingSet, false, 0);
 | |
| 
 | |
|     /// main loop of the solver
 | |
|     while (!state.converged)
 | |
|       state = iterate(state);
 | |
| 
 | |
|     return make_pair(state.values, state.duals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| boost::tuples::tuple<double, int> LPSolver::computeStepSize(
 | |
|     const InequalityFactorGraph &workingSet, const VectorValues &xk,
 | |
|     const VectorValues &p) const {
 | |
|   return ActiveSetSolver::computeStepSize(workingSet, xk, p,
 | |
|       std::numeric_limits<double>::infinity());
 | |
| }
 | |
| 
 | |
| pair<VectorValues, VectorValues> LPSolver::optimize() const {
 | |
|   LPInitSolverMatlab initSolver(*this);
 | |
|   VectorValues initValues = initSolver.solve();
 | |
|   return optimize(initValues);
 | |
| }
 | |
| }
 | |
| 
 |