169 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    SFMExample_SmartFactor.cpp
 | |
|  * @brief   A structure-from-motion problem on a simulated dataset, using smart projection factor
 | |
|  * @author  Duy-Nguyen Ta
 | |
|  * @author  Jing Dong
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * A structure-from-motion example with landmarks
 | |
|  *  - The landmarks form a 10 meter cube
 | |
|  *  - The robot rotates around the landmarks, always facing towards the cube
 | |
|  */
 | |
| 
 | |
| // For loading the data
 | |
| #include "SFMdata.h"
 | |
| 
 | |
| // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| // Each variable in the system (poses and landmarks) must be identified with a unique key.
 | |
| // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | |
| // Here we will use Symbols
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| // In GTSAM, measurement functions are represented as 'factors'.
 | |
| // The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
 | |
| // The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
 | |
| // The calibration should be known.
 | |
| #include <gtsam/slam/SmartProjectionPoseFactor.h>
 | |
| 
 | |
| // Also, we will initialize the robot at some location using a Prior factor.
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| 
 | |
| // When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | |
| // are nonlinear factors, we will need a Nonlinear Factor Graph.
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| 
 | |
| // Finally, once all of the factors have been added to our factor graph, we will want to
 | |
| // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | |
| // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
 | |
| // trust-region method known as Powell's Degleg
 | |
| #include <gtsam/nonlinear/DoglegOptimizer.h>
 | |
| 
 | |
| // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | |
| // nonlinear functions around an initial linearization point, then solve the linear system
 | |
| // to update the linearization point. This happens repeatedly until the solver converges
 | |
| // to a consistent set of variable values. This requires us to specify an initial guess
 | |
| // for each variable, held in a Values container.
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Make the typename short so it looks much cleaner
 | |
| typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2>
 | |
|   SmartFactor;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
| 
 | |
|   // Define the camera calibration parameters
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
 | |
| 
 | |
|   // Define the camera observation noise model
 | |
|   noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | |
| 
 | |
|   // Create the set of ground-truth landmarks
 | |
|   vector<Point3> points = createPoints();
 | |
| 
 | |
|   // Create the set of ground-truth poses
 | |
|   vector<Pose3> poses = createPoses();
 | |
| 
 | |
|   // Create a factor graph
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // A vector saved all Smart factors (for get landmark position after optimization)
 | |
|   vector<SmartFactor::shared_ptr> smartfactors_ptr;
 | |
| 
 | |
|   // Simulated measurements from each camera pose, adding them to the factor graph
 | |
|   for (size_t i = 0; i < points.size(); ++i) {
 | |
| 
 | |
|     // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
 | |
|     SmartFactor::shared_ptr smartfactor(new SmartFactor());
 | |
| 
 | |
|     for (size_t j = 0; j < poses.size(); ++j) {
 | |
| 
 | |
|       // generate the 2D measurement
 | |
|       SimpleCamera camera(poses[j], *K);
 | |
|       Point2 measurement = camera.project(points[i]);
 | |
| 
 | |
|       // call add() function to add measurment into a single factor, here we need to add:
 | |
|       //    1. the 2D measurement
 | |
|       //    2. the corresponding camera's key
 | |
|       //    3. camera noise model
 | |
|       //    4. camera calibration
 | |
|       smartfactor->add(measurement, Symbol('x', j), measurementNoise, K);
 | |
|     }
 | |
| 
 | |
|     // save smartfactors to get landmark position
 | |
|     smartfactors_ptr.push_back(smartfactor);
 | |
| 
 | |
|     // insert the smart factor in the graph
 | |
|     graph.push_back(smartfactor);
 | |
|   }
 | |
| 
 | |
|   // Add a prior on pose x0. This indirectly specifies where the origin is.
 | |
|   noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | |
|   graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
 | |
| 
 | |
|   // Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
 | |
|   // Here we add a prior on the second pose x1, so this will fix the scale by indicating the distance between x0 and x1.
 | |
|   // Because these two are fixed, the rest poses will be alse fixed.
 | |
|   graph.push_back(PriorFactor<Pose3>(Symbol('x', 1), poses[1], poseNoise)); // add directly to graph
 | |
| 
 | |
|   graph.print("Factor Graph:\n");
 | |
| 
 | |
|   // Create the data structure to hold the initial estimate to the solution
 | |
|   // Intentionally initialize the variables off from the ground truth
 | |
|   Values initialEstimate;
 | |
|   for (size_t i = 0; i < poses.size(); ++i)
 | |
|     initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
 | |
|   initialEstimate.print("Initial Estimates:\n");
 | |
| 
 | |
|   // Optimize the graph and print results
 | |
|   Values result = DoglegOptimizer(graph, initialEstimate).optimize();
 | |
|   result.print("Final results:\n");
 | |
| 
 | |
| 
 | |
|   // Notice: Smart factor represent the 3D point as a factor, not a variable.
 | |
|   // The 3D position of the landmark is not explicitly calculated by the optimizer.
 | |
|   // If you do want to output the landmark's 3D position, you should use the internal function point()
 | |
|   // of the smart factor to get the 3D point.
 | |
|   Values landmark_result;
 | |
|   for (size_t i = 0; i < points.size(); ++i) {
 | |
| 
 | |
|     // The output of point() is in boost::optional<gtsam::Point3>, since sometimes
 | |
|     // the triangulation opterations inside smart factor will encounter degeneracy.
 | |
|     // Check the manual of boost::optional for more details for the usages.
 | |
|     boost::optional<Point3> point;
 | |
| 
 | |
|     // here we use the saved smart factors to call, pass in all optimized pose to calculate landmark positions
 | |
|     point = smartfactors_ptr.at(i)->point(result);
 | |
| 
 | |
|     // ignore if boost::optional return NULL
 | |
|     if (point)
 | |
|       landmark_result.insert(Symbol('l', i), *point);
 | |
|   }
 | |
| 
 | |
|   landmark_result.print("Landmark results:\n");
 | |
| 
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |