114 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Matlab
		
	
	
function pts2dTracksMono = points2DTrackMonocular(K, cameraPoses, imageSize, cylinders)
 | 
						|
% Assess how accurately we can reconstruct points from a particular monocular camera setup. 
 | 
						|
% After creation of the factor graph for each track, linearize it around ground truth. 
 | 
						|
% There is no optimization
 | 
						|
% @author: Zhaoyang Lv
 | 
						|
 | 
						|
import gtsam.*
 | 
						|
 | 
						|
%% create graph
 | 
						|
graph = NonlinearFactorGraph;
 | 
						|
 | 
						|
%% create the noise factors
 | 
						|
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
 | 
						|
posePriorNoise  = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
 | 
						|
measurementNoiseSigma = 1.0;
 | 
						|
measurementNoise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
 | 
						|
 | 
						|
cameraPosesNum = length(cameraPoses);
 | 
						|
 | 
						|
%% add measurements and initial camera & points values
 | 
						|
pointsNum = 0;
 | 
						|
cylinderNum = length(cylinders);
 | 
						|
points3d = cell(0);
 | 
						|
for i = 1:cylinderNum
 | 
						|
    cylinderPointsNum = length(cylinders{i}.Points);
 | 
						|
    pointsNum = pointsNum + cylinderPointsNum; 
 | 
						|
    for j = 1:cylinderPointsNum
 | 
						|
        points3d{end+1}.data = cylinders{i}.Points{j};
 | 
						|
        points3d{end}.Z = cell(0);
 | 
						|
        points3d{end}.camConstraintIdx = cell(0);
 | 
						|
        points3d{end}.added = cell(0);
 | 
						|
        points3d{end}.visiblity = false;
 | 
						|
        points3d{end}.cov = cell(cameraPosesNum);
 | 
						|
    end
 | 
						|
end
 | 
						|
 | 
						|
graph.add(PriorFactorPose3(symbol('x', 1), cameraPoses{1}, posePriorNoise));
 | 
						|
 | 
						|
%% initialize graph and values
 | 
						|
initialEstimate = Values;
 | 
						|
for i = 1:pointsNum
 | 
						|
    point_j = points3d{i}.data.retract(0.1*randn(3,1));
 | 
						|
    initialEstimate.insert(symbol('p', i), point_j); 
 | 
						|
end
 | 
						|
 | 
						|
pts3d = cell(cameraPosesNum, 1);
 | 
						|
cameraPosesCov = cell(cameraPosesNum, 1);
 | 
						|
marginals = Values;
 | 
						|
for i = 1:cameraPosesNum     
 | 
						|
    cameraPose = cameraPoses{i};    
 | 
						|
    pts3d{i} = cylinderSampleProjection(K, cameraPose, imageSize, cylinders);
 | 
						|
    
 | 
						|
    measurementNum = length(pts3d{i}.Z);
 | 
						|
    for j = 1:measurementNum
 | 
						|
        index = pts3d{i}.overallIdx{j};
 | 
						|
        points3d{index}.Z{end+1} = pts3d{i}.Z{j};
 | 
						|
        points3d{index}.camConstraintIdx{end+1} = i;
 | 
						|
        points3d{index}.added{end+1} = false;
 | 
						|
        
 | 
						|
        if length(points3d{index}.Z) < 2
 | 
						|
            continue;
 | 
						|
        else
 | 
						|
            for k = 1:length(points3d{index}.Z)
 | 
						|
                if ~points3d{index}.added{k}                
 | 
						|
                    graph.add(GenericProjectionFactorCal3_S2(points3d{index}.Z{k}, ...
 | 
						|
                        measurementNoise, symbol('x', points3d{index}.camConstraintIdx{k}), ...
 | 
						|
                        symbol('p', index), K) );
 | 
						|
                    points3d{index}.added{k} = true;
 | 
						|
                end
 | 
						|
            end
 | 
						|
        end 
 | 
						|
        
 | 
						|
        points3d{index}.visiblity = true;    
 | 
						|
    end
 | 
						|
 | 
						|
    pose_i = cameraPoses{i}.retract(0.1*randn(6,1));
 | 
						|
    initialEstimate.insert(symbol('x', i), pose_i);    
 | 
						|
 | 
						|
    marginals = Marginals(graph, initialEstimate);
 | 
						|
 | 
						|
    for j = 1:pointsNum
 | 
						|
        if points3d{j}.visiblity
 | 
						|
            points3d{j}.cov{i} = marginals.marginalCovariance(symbol('p',j));
 | 
						|
        end
 | 
						|
    end
 | 
						|
 | 
						|
    cameraPosesCov{i} = marginals.marginalCovariance(symbol('x',i));
 | 
						|
 | 
						|
end
 | 
						|
  
 | 
						|
%% Print the graph
 | 
						|
graph.print(sprintf('\nFactor graph:\n'));
 | 
						|
 | 
						|
%% Plot the result
 | 
						|
plotFlyingResults(points3d, cameraPoses, cameraPosesCov, cylinders, options);
 | 
						|
 | 
						|
%% get all the points track information
 | 
						|
for i = 1:pointsNum
 | 
						|
    if ~points3d{i}.visiblity
 | 
						|
        continue;
 | 
						|
    end
 | 
						|
    
 | 
						|
    pts2dTracksMono.pt3d{end+1} = points3d{i}.data;
 | 
						|
    pts2dTracksMono.Z{end+1} = points3d{i}.Z;
 | 
						|
 | 
						|
    if length(points3d{i}.Z) == 1
 | 
						|
        %pts2dTracksMono.cov{i} singular matrix 
 | 
						|
    else 
 | 
						|
        pts2dTracksMono.cov{end+1} = marginals.marginalCovariance(symbol('p', i));    
 | 
						|
    end
 | 
						|
end
 | 
						|
 | 
						|
end
 |