311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    testBayesTree.cpp
 | |
|  * @brief   Unit tests for Bayes Tree
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include "SymbolicBayesNet.h"
 | |
| #include "GaussianBayesNet.h"
 | |
| #include "Ordering.h"
 | |
| #include "BayesTree-inl.h"
 | |
| #include "smallExample.h"
 | |
| 
 | |
| using namespace gtsam;
 | |
| 
 | |
| typedef BayesTree<SymbolicConditional> SymbolicBayesTree;
 | |
| typedef BayesTree<GaussianConditional> GaussianBayesTree;
 | |
| 
 | |
| // Conditionals for ASIA example from the tutorial with A and D evidence
 | |
| SymbolicConditional::shared_ptr B(new SymbolicConditional("B")), L(
 | |
| 		new SymbolicConditional("L", "B")), E(
 | |
| 		new SymbolicConditional("E", "L", "B")), S(new SymbolicConditional("S",
 | |
| 		"L", "B")), T(new SymbolicConditional("T", "E", "L")), X(
 | |
| 		new SymbolicConditional("X", "E"));
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( BayesTree, Front )
 | |
| {
 | |
| 	SymbolicBayesNet f1;
 | |
| 	f1.push_back(B);
 | |
| 	f1.push_back(L);
 | |
| 	SymbolicBayesNet f2;
 | |
| 	f2.push_back(L);
 | |
| 	f2.push_back(B);
 | |
| 	CHECK(f1.equals(f1));
 | |
| 	CHECK(!f1.equals(f2));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( BayesTree, constructor )
 | |
| {
 | |
| 	// Create using insert
 | |
| 	SymbolicBayesTree bayesTree;
 | |
| 	bayesTree.insert(B);
 | |
| 	bayesTree.insert(L);
 | |
| 	bayesTree.insert(E);
 | |
| 	bayesTree.insert(S);
 | |
| 	bayesTree.insert(T);
 | |
| 	bayesTree.insert(X);
 | |
| 
 | |
| 	// Check Size
 | |
| 	LONGS_EQUAL(4,bayesTree.size());
 | |
| 
 | |
| 	// Check root
 | |
| 	BayesNet<SymbolicConditional> expected_root;
 | |
| 	expected_root.push_back(E);
 | |
| 	expected_root.push_back(L);
 | |
| 	expected_root.push_back(B);
 | |
| 	boost::shared_ptr<SymbolicBayesNet> actual_root = bayesTree.root();
 | |
| 	CHECK(assert_equal(expected_root,*actual_root));
 | |
| 
 | |
| 	// Create from symbolic Bayes chain in which we want to discover cliques
 | |
| 	SymbolicBayesNet ASIA;
 | |
| 	ASIA.push_back(X);
 | |
| 	ASIA.push_back(T);
 | |
| 	ASIA.push_back(S);
 | |
| 	ASIA.push_back(E);
 | |
| 	ASIA.push_back(L);
 | |
| 	ASIA.push_back(B);
 | |
| 	SymbolicBayesTree bayesTree2(ASIA);
 | |
| 	//bayesTree2.print("bayesTree2");
 | |
| 
 | |
| 	// Check whether the same
 | |
| 	CHECK(assert_equal(bayesTree,bayesTree2));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Some numbers that should be consistent among all smoother tests
 | |
| 
 | |
| double sigmax1 = 0.786153, sigmax2 = 0.687131, sigmax3 = 0.671512, sigmax4 =
 | |
| 		0.669534, sigmax5 = sigmax3, sigmax6 = sigmax2, sigmax7 = sigmax1;
 | |
| 
 | |
| /* ************************************************************************* *
 | |
|  Bayes tree for smoother with "natural" ordering:
 | |
| C1 x6 x7
 | |
| C2   x5 : x6
 | |
| C3     x4 : x5
 | |
| C4       x3 : x4
 | |
| C5         x2 : x3
 | |
| C6           x1 : x2
 | |
| /* ************************************************************************* */
 | |
| TEST( BayesTree, linear_smoother_shortcuts )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
| 	GaussianFactorGraph smoother = createSmoother(7);
 | |
| 	Ordering ordering;
 | |
| 	for (int t = 1; t <= 7; t++)
 | |
| 		ordering.push_back(symbol('x', t));
 | |
| 
 | |
| 	// eliminate using the "natural" ordering
 | |
| 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	GaussianBayesTree bayesTree(chordalBayesNet);
 | |
| 	LONGS_EQUAL(6,bayesTree.size());
 | |
| 
 | |
| 	// Check the conditional P(Root|Root)
 | |
| 	GaussianBayesNet empty;
 | |
| 	GaussianBayesTree::sharedClique R = bayesTree.root();
 | |
| 	GaussianBayesNet actual1 = R->shortcut<GaussianFactor>(R);
 | |
| 	CHECK(assert_equal(empty,actual1,1e-4));
 | |
| 
 | |
| 	// Check the conditional P(C2|Root)
 | |
| 	GaussianBayesTree::sharedClique C2 = bayesTree["x5"];
 | |
| 	GaussianBayesNet actual2 = C2->shortcut<GaussianFactor>(R);
 | |
| 	CHECK(assert_equal(empty,actual2,1e-4));
 | |
| 
 | |
| 	// Check the conditional P(C3|Root)
 | |
|   Vector sigma3 = repeat(2, 0.61808);
 | |
|   Matrix A56 = Matrix_(2,2,-0.382022,0.,0.,-0.382022);
 | |
| 	GaussianBayesNet expected3;
 | |
| 	push_front(expected3,"x5", zero(2), eye(2), "x6", A56, sigma3);
 | |
| 	GaussianBayesTree::sharedClique C3 = bayesTree["x4"];
 | |
| 	GaussianBayesNet actual3 = C3->shortcut<GaussianFactor>(R);
 | |
| 	CHECK(assert_equal(expected3,actual3,1e-4));
 | |
| 
 | |
| 	// Check the conditional P(C4|Root)
 | |
|   Vector sigma4 = repeat(2, 0.661968);
 | |
|   Matrix A46 = Matrix_(2,2,-0.146067,0.,0.,-0.146067);
 | |
|   GaussianBayesNet expected4;
 | |
|   push_front(expected4,"x4", zero(2), eye(2), "x6", A46, sigma4);
 | |
| 	GaussianBayesTree::sharedClique C4 = bayesTree["x3"];
 | |
| 	GaussianBayesNet actual4 = C4->shortcut<GaussianFactor>(R);
 | |
| 	CHECK(assert_equal(expected4,actual4,1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* *
 | |
|  Bayes tree for smoother with "nested dissection" ordering:
 | |
| 
 | |
| 	 Node[x1] P(x1 | x2)
 | |
| 	 Node[x3] P(x3 | x2 x4)
 | |
| 	 Node[x5] P(x5 | x4 x6)
 | |
| 	 Node[x7] P(x7 | x6)
 | |
| 	 Node[x2] P(x2 | x4)
 | |
| 	 Node[x6] P(x6 | x4)
 | |
| 	 Node[x4] P(x4)
 | |
| 
 | |
|  becomes
 | |
| 
 | |
| 	 C1		 x5 x6 x4
 | |
| 	 C2		  x3 x2 : x4
 | |
| 	 C3		    x1 : x2
 | |
| 	 C4		  x7 : x6
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( BayesTree, balanced_smoother_marginals )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
| 	GaussianFactorGraph smoother = createSmoother(7);
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
| 
 | |
| 	// eliminate using a "nested dissection" ordering
 | |
| 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
 | |
| 
 | |
|   VectorConfig expectedSolution;
 | |
|   BOOST_FOREACH(string key, ordering)
 | |
| 		expectedSolution.insert(key,zero(2));
 | |
|   VectorConfig actualSolution = optimize(chordalBayesNet);
 | |
| 	CHECK(assert_equal(expectedSolution,actualSolution,1e-4));
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	GaussianBayesTree bayesTree(chordalBayesNet);
 | |
| 	LONGS_EQUAL(4,bayesTree.size());
 | |
| 
 | |
| 	// Check marginal on x1
 | |
| 	GaussianBayesNet expected1 = simpleGaussian("x1", zero(2), sigmax1);
 | |
| 	GaussianBayesNet actual1 = bayesTree.marginalBayesNet<GaussianFactor>("x1");
 | |
| 	CHECK(assert_equal(expected1,actual1,1e-4));
 | |
| 
 | |
| 	// Check marginal on x2
 | |
|   GaussianBayesNet expected2 = simpleGaussian("x2", zero(2), sigmax2);
 | |
| 	GaussianBayesNet actual2 = bayesTree.marginalBayesNet<GaussianFactor>("x2");
 | |
| 	CHECK(assert_equal(expected2,actual2,1e-4));
 | |
| 
 | |
| 	// Check marginal on x3
 | |
|   GaussianBayesNet expected3 = simpleGaussian("x3", zero(2), sigmax3);
 | |
| 	GaussianBayesNet actual3 = bayesTree.marginalBayesNet<GaussianFactor>("x3");
 | |
| 	CHECK(assert_equal(expected3,actual3,1e-4));
 | |
| 
 | |
| 	// Check marginal on x4
 | |
|   GaussianBayesNet expected4 = simpleGaussian("x4", zero(2), sigmax4);
 | |
| 	GaussianBayesNet actual4 = bayesTree.marginalBayesNet<GaussianFactor>("x4");
 | |
| 	CHECK(assert_equal(expected4,actual4,1e-4));
 | |
| 
 | |
| 	// Check marginal on x7 (should be equal to x1)
 | |
|   GaussianBayesNet expected7 = simpleGaussian("x7", zero(2), sigmax7);
 | |
| 	GaussianBayesNet actual7 = bayesTree.marginalBayesNet<GaussianFactor>("x7");
 | |
| 	CHECK(assert_equal(expected7,actual7,1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( BayesTree, balanced_smoother_shortcuts )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
| 	GaussianFactorGraph smoother = createSmoother(7);
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
 | |
| 	GaussianBayesTree bayesTree(chordalBayesNet);
 | |
| 
 | |
| 	// Check the conditional P(Root|Root)
 | |
| 	GaussianBayesNet empty;
 | |
| 	GaussianBayesTree::sharedClique R = bayesTree.root();
 | |
| 	GaussianBayesNet actual1 = R->shortcut<GaussianFactor>(R);
 | |
| 	CHECK(assert_equal(empty,actual1,1e-4));
 | |
| 
 | |
| 	// Check the conditional P(C2|Root)
 | |
| 	GaussianBayesTree::sharedClique C2 = bayesTree["x3"];
 | |
| 	GaussianBayesNet actual2 = C2->shortcut<GaussianFactor>(R);
 | |
| 	CHECK(assert_equal(empty,actual2,1e-4));
 | |
| 
 | |
| 	// Check the conditional P(C3|Root), which should be equal to P(x2|x4)
 | |
| 	GaussianConditional::shared_ptr p_x2_x4 = chordalBayesNet["x2"];
 | |
| 	GaussianBayesNet expected3; expected3.push_back(p_x2_x4);
 | |
| 	GaussianBayesTree::sharedClique C3 = bayesTree["x1"];
 | |
| 	GaussianBayesNet actual3 = C3->shortcut<GaussianFactor>(R);
 | |
| 	CHECK(assert_equal(expected3,actual3,1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( BayesTree, balanced_smoother_clique_marginals )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
| 	GaussianFactorGraph smoother = createSmoother(7);
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
 | |
| 	GaussianBayesTree bayesTree(chordalBayesNet);
 | |
| 
 | |
| 	// Check the clique marginal P(C3)
 | |
| 	GaussianBayesNet expected = simpleGaussian("x2",zero(2),sigmax2);
 | |
|   Vector sigma = repeat(2, 0.707107);
 | |
|   Matrix A12 = (-0.5)*eye(2);
 | |
|   push_front(expected,"x1", zero(2), eye(2), "x2", A12, sigma);
 | |
| 	GaussianBayesTree::sharedClique R = bayesTree.root(), C3 = bayesTree["x1"];
 | |
| 	FactorGraph<GaussianFactor> marginal = C3->marginal<GaussianFactor>(R);
 | |
| 	GaussianBayesNet actual = eliminate<GaussianFactor,GaussianConditional>(marginal,C3->keys());
 | |
| 	CHECK(assert_equal(expected,actual,1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( BayesTree, balanced_smoother_joint )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
| 	GaussianFactorGraph smoother = createSmoother(7);
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
 | |
| 	GaussianBayesTree bayesTree(chordalBayesNet);
 | |
| 
 | |
|   // Conditional density elements reused by both tests
 | |
| 	Vector sigma = repeat(2, 0.786146);
 | |
|   Matrix I = eye(2), A = -0.00429185*I;
 | |
| 
 | |
|   // Check the joint density P(x1,x7) factored as P(x1|x7)P(x7)
 | |
|   GaussianBayesNet expected1 = simpleGaussian("x7", zero(2), sigmax7);
 | |
|   push_front(expected1,"x1", zero(2), I, "x7", A, sigma);
 | |
| 	GaussianBayesNet actual1 = bayesTree.jointBayesNet<GaussianFactor>("x1","x7");
 | |
| 	CHECK(assert_equal(expected1,actual1,1e-4));
 | |
| 
 | |
| 	// Check the joint density P(x7,x1) factored as P(x7|x1)P(x1)
 | |
|   GaussianBayesNet expected2 = simpleGaussian("x1", zero(2), sigmax1);
 | |
|   push_front(expected2,"x7", zero(2), I, "x1", A, sigma);
 | |
| 	GaussianBayesNet actual2 = bayesTree.jointBayesNet<GaussianFactor>("x7","x1");
 | |
| 	CHECK(assert_equal(expected2,actual2,1e-4));
 | |
| 
 | |
| 	// Check the joint density P(x1,x4), i.e. with a root variable
 | |
|   GaussianBayesNet expected3 = simpleGaussian("x4", zero(2), sigmax4);
 | |
| 	Vector sigma14 = repeat(2, 0.784465);
 | |
|   Matrix A14 = -0.0769231*I;
 | |
|   push_front(expected3,"x1", zero(2), I, "x4", A14, sigma14);
 | |
| 	GaussianBayesNet actual3 = bayesTree.jointBayesNet<GaussianFactor>("x1","x4");
 | |
| 	CHECK(assert_equal(expected3,actual3,1e-4));
 | |
| 
 | |
| 	// Check the joint density P(x4,x1), i.e. with a root variable, factored the other way
 | |
|   GaussianBayesNet expected4 = simpleGaussian("x1", zero(2), sigmax1);
 | |
| 	Vector sigma41 = repeat(2, 0.668096);
 | |
|   Matrix A41 = -0.055794*I;
 | |
|   push_front(expected4,"x4", zero(2), I, "x1", A41, sigma41);
 | |
| 	GaussianBayesNet actual4 = bayesTree.jointBayesNet<GaussianFactor>("x4","x1");
 | |
| 	CHECK(assert_equal(expected4,actual4,1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
| 	TestResult tr;
 | |
| 	return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |