211 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * NonlinearOptimizer-inl.h
 | |
|  * This is a template definition file, include it where needed (only!)
 | |
|  * so that the appropriate code is generated and link errors avoided.
 | |
|  * @brief: Encapsulates nonlinear optimization state
 | |
|  * @Author: Frank Dellaert
 | |
|  * Created on: Sep 7, 2009
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <iostream>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include "NonlinearOptimizer.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	bool check_convergence(double relativeErrorTreshold,
 | |
| 			double absoluteErrorTreshold, double currentError, double newError,
 | |
| 			int verbosity) {
 | |
| 		// check if diverges
 | |
| 		double absoluteDecrease = currentError - newError;
 | |
| 		if (verbosity >= 2)
 | |
| 			cout << "absoluteDecrease: " << absoluteDecrease << endl;
 | |
| 		if (absoluteDecrease < 0)
 | |
| 			throw overflow_error(
 | |
| 					"NonlinearFactorGraph::optimize: error increased, diverges.");
 | |
| 
 | |
| 		// calculate relative error decrease and update currentError
 | |
| 		double relativeDecrease = absoluteDecrease / currentError;
 | |
| 		if (verbosity >= 2)
 | |
| 			cout << "relativeDecrease: " << relativeDecrease << endl;
 | |
| 		bool converged = (relativeDecrease < relativeErrorTreshold)
 | |
| 				|| (absoluteDecrease < absoluteErrorTreshold);
 | |
| 		if (verbosity >= 1 && converged)
 | |
| 			cout << "converged" << endl;
 | |
| 		return converged;
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// Constructors
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class G, class C>
 | |
| 	NonlinearOptimizer<G, C>::NonlinearOptimizer(const G& graph,
 | |
| 			const Ordering& ordering, shared_config config, double lambda) :
 | |
| 		graph_(&graph), ordering_(&ordering), config_(config), error_(graph.error(
 | |
| 				*config)), lambda_(lambda) {
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// linearize and optimize
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class G, class C>
 | |
| 	VectorConfig NonlinearOptimizer<G, C>::linearizeAndOptimizeForDelta() const {
 | |
| 
 | |
| 		// linearize the non-linear graph around the current config
 | |
| 		// which gives a linear optimization problem in the tangent space
 | |
| 		GaussianFactorGraph linear = graph_->linearize(*config_);
 | |
| 
 | |
| 		// solve for the optimal displacement in the tangent space
 | |
| 		VectorConfig delta = linear.optimize(*ordering_);
 | |
| 
 | |
| 		// return
 | |
| 		return delta;
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// One iteration of Gauss Newton
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class G, class C>
 | |
| 	NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::iterate(
 | |
| 			verbosityLevel verbosity) const {
 | |
| 
 | |
| 		// linearize and optimize
 | |
| 		VectorConfig delta = linearizeAndOptimizeForDelta();
 | |
| 
 | |
| 		// maybe show output
 | |
| 		if (verbosity >= DELTA)
 | |
| 			delta.print("delta");
 | |
| 
 | |
| 		// take old config and update it
 | |
| 		shared_config newConfig(new C(config_->exmap(delta)));
 | |
| 
 | |
| 		// maybe show output
 | |
| 		if (verbosity >= CONFIG)
 | |
| 			newConfig->print("newConfig");
 | |
| 
 | |
| 		return NonlinearOptimizer(*graph_, *ordering_, newConfig);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class G, class C>
 | |
| 	NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::gaussNewton(
 | |
| 			double relativeThreshold, double absoluteThreshold,
 | |
| 			verbosityLevel verbosity, int maxIterations) const {
 | |
| 		// linearize, solve, update
 | |
| 		NonlinearOptimizer next = iterate(verbosity);
 | |
| 
 | |
| 		// check convergence
 | |
| 		bool converged = gtsam::check_convergence(relativeThreshold,
 | |
| 				absoluteThreshold, error_, next.error_, verbosity);
 | |
| 
 | |
| 		// return converged state or iterate
 | |
| 		if (converged)
 | |
| 			return next;
 | |
| 		else
 | |
| 			return next.gaussNewton(relativeThreshold, absoluteThreshold, verbosity);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// Recursively try to do tempered Gauss-Newton steps until we succeed.
 | |
| 	// Form damped system with given lambda, and return a new, more optimistic
 | |
| 	// optimizer if error decreased or recurse with a larger lambda if not.
 | |
| 	// TODO: in theory we can't infinitely recurse, but maybe we should put a max.
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class G, class C>
 | |
| 	NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::try_lambda(
 | |
| 			const GaussianFactorGraph& linear, verbosityLevel verbosity, double factor) const {
 | |
| 
 | |
| 		if (verbosity >= TRYLAMBDA)
 | |
| 			cout << "trying lambda = " << lambda_ << endl;
 | |
| 
 | |
| 		// add prior-factors
 | |
| 		GaussianFactorGraph damped = linear.add_priors(1.0/sqrt(lambda_));
 | |
| 		if (verbosity >= DAMPED)
 | |
| 			damped.print("damped");
 | |
| 
 | |
| 		// solve
 | |
| 		VectorConfig delta = damped.optimize(*ordering_);
 | |
| 		if (verbosity >= TRYDELTA)
 | |
| 			delta.print("delta");
 | |
| 
 | |
| 		// update config
 | |
| 		shared_config newConfig(new C(config_->exmap(delta)));
 | |
| 		if (verbosity >= TRYCONFIG)
 | |
| 			newConfig->print("config");
 | |
| 
 | |
| 		// create new optimization state with more adventurous lambda
 | |
| 		NonlinearOptimizer next(*graph_, *ordering_, newConfig, lambda_ / factor);
 | |
| 
 | |
| 		// if error decreased, return the new state
 | |
| 		if (next.error_ <= error_)
 | |
| 			return next;
 | |
| 		else {
 | |
| 			// TODO: can we avoid copying the config ?
 | |
| 			NonlinearOptimizer cautious(*graph_, *ordering_, config_, lambda_ * factor);
 | |
| 			return cautious.try_lambda(linear, verbosity, factor);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// One iteration of Levenberg Marquardt
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class G, class C>
 | |
| 	NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::iterateLM(
 | |
| 			verbosityLevel verbosity, double lambdaFactor) const {
 | |
| 
 | |
| 		// maybe show output
 | |
| 		if (verbosity >= CONFIG)
 | |
| 			config_->print("config");
 | |
| 		if (verbosity >= ERROR)
 | |
| 			cout << "error: " << error_ << endl;
 | |
| 		if (verbosity >= LAMBDA)
 | |
| 			cout << "lambda = " << lambda_ << endl;
 | |
| 
 | |
| 		// linearize all factors once
 | |
| 		GaussianFactorGraph linear = graph_->linearize(*config_);
 | |
| 		if (verbosity >= LINEAR)
 | |
| 			linear.print("linear");
 | |
| 
 | |
| 		// try lambda steps with successively larger lambda until we achieve descent
 | |
| 		return try_lambda(linear, verbosity, lambdaFactor);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class G, class C>
 | |
| 	NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::levenbergMarquardt(
 | |
| 			double relativeThreshold, double absoluteThreshold,
 | |
| 			verbosityLevel verbosity, int maxIterations, double lambdaFactor) const {
 | |
| 
 | |
| 		// do one iteration of LM
 | |
| 		NonlinearOptimizer next = iterateLM(verbosity, lambdaFactor);
 | |
| 
 | |
| 		// check convergence
 | |
| 		// TODO: move convergence checks here and incorporate in verbosity levels
 | |
| 		// TODO: build into iterations somehow as an instance variable
 | |
| 		bool converged = gtsam::check_convergence(relativeThreshold,
 | |
| 				absoluteThreshold, error_, next.error_, verbosity);
 | |
| 
 | |
| 		// return converged state or iterate
 | |
| 		if (converged || maxIterations <= 1) {
 | |
| 			// maybe show output
 | |
| 			if (verbosity >= CONFIG)
 | |
| 				next.config_->print("final config");
 | |
| 			if (verbosity >= ERROR)
 | |
| 				cout << "final error: " << next.error_ << endl;
 | |
| 			if (verbosity >= LAMBDA)
 | |
| 				cout << "final lambda = " << next.lambda_ << endl;
 | |
| 			return next;
 | |
| 		} else
 | |
| 			return next.levenbergMarquardt(relativeThreshold, absoluteThreshold,
 | |
| 					verbosity, lambdaFactor);
 | |
| 	}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| }
 |