523 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			523 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file   SmartStereoProjectionFactor.h
 | 
						|
 * @brief  Smart stereo factor on StereoCameras (pose + calibration)
 | 
						|
 * @author Luca Carlone
 | 
						|
 * @author Zsolt Kira
 | 
						|
 * @author Frank Dellaert
 | 
						|
 * @author Chris Beall
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam/slam/SmartFactorBase.h>
 | 
						|
#include <gtsam/slam/SmartFactorParams.h>
 | 
						|
 | 
						|
#include <gtsam/geometry/triangulation.h>
 | 
						|
#include <gtsam/geometry/Pose3.h>
 | 
						|
#include <gtsam/geometry/StereoCamera.h>
 | 
						|
#include <gtsam/slam/StereoFactor.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/slam/dataset.h>
 | 
						|
 | 
						|
#include <boost/optional.hpp>
 | 
						|
#include <boost/make_shared.hpp>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/*
 | 
						|
 *  Parameters for the smart stereo projection factors (identical to the SmartProjectionParams)
 | 
						|
 */
 | 
						|
typedef SmartProjectionParams SmartStereoProjectionParams;
 | 
						|
 | 
						|
/**
 | 
						|
 * SmartStereoProjectionFactor: triangulates point and keeps an estimate of it around.
 | 
						|
 * This factor operates with StereoCamera. This factor requires that values
 | 
						|
 * contains the involved StereoCameras. Calibration is assumed to be fixed, as this
 | 
						|
 * is also assumed in StereoCamera.
 | 
						|
 * If you'd like to store poses in values instead of cameras, use
 | 
						|
 * SmartStereoProjectionPoseFactor instead
 | 
						|
*/
 | 
						|
class SmartStereoProjectionFactor: public SmartFactorBase<StereoCamera> {
 | 
						|
private:
 | 
						|
 | 
						|
  typedef SmartFactorBase<StereoCamera> Base;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
  /// @name Parameters
 | 
						|
  /// @{
 | 
						|
  const SmartStereoProjectionParams params_;
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// @name Caching triangulation
 | 
						|
  /// @{
 | 
						|
  mutable TriangulationResult result_; ///< result from triangulateSafe
 | 
						|
  mutable std::vector<Pose3> cameraPosesTriangulation_; ///< current triangulation poses
 | 
						|
  /// @}
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  /// shorthand for a smart pointer to a factor
 | 
						|
  typedef boost::shared_ptr<SmartStereoProjectionFactor> shared_ptr;
 | 
						|
 | 
						|
  /// Vector of cameras
 | 
						|
  typedef CameraSet<StereoCamera> Cameras;
 | 
						|
 | 
						|
  /// Vector of monocular cameras (stereo treated as 2 monocular)
 | 
						|
  typedef PinholeCamera<Cal3_S2> MonoCamera;
 | 
						|
  typedef CameraSet<MonoCamera> MonoCameras;
 | 
						|
  typedef MonoCamera::MeasurementVector MonoMeasurements;
 | 
						|
 | 
						|
  /**
 | 
						|
   * Constructor
 | 
						|
   * @param params internal parameters of the smart factors
 | 
						|
   */
 | 
						|
  SmartStereoProjectionFactor(const SharedNoiseModel& sharedNoiseModel,
 | 
						|
      const SmartStereoProjectionParams& params = SmartStereoProjectionParams(),
 | 
						|
      const boost::optional<Pose3> body_P_sensor = boost::none) :
 | 
						|
      Base(sharedNoiseModel, body_P_sensor), //
 | 
						|
      params_(params), //
 | 
						|
      result_(TriangulationResult::Degenerate()) {
 | 
						|
  }
 | 
						|
 | 
						|
  /** Virtual destructor */
 | 
						|
  virtual ~SmartStereoProjectionFactor() {
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * print
 | 
						|
   * @param s optional string naming the factor
 | 
						|
   * @param keyFormatter optional formatter useful for printing Symbols
 | 
						|
   */
 | 
						|
  void print(const std::string& s = "", const KeyFormatter& keyFormatter =
 | 
						|
      DefaultKeyFormatter) const {
 | 
						|
    std::cout << s << "SmartStereoProjectionFactor\n";
 | 
						|
    std::cout << "linearizationMode:\n" << params_.linearizationMode << std::endl;
 | 
						|
    std::cout << "triangulationParameters:\n" << params_.triangulation << std::endl;
 | 
						|
    std::cout << "result:\n" << result_ << std::endl;
 | 
						|
    Base::print("", keyFormatter);
 | 
						|
  }
 | 
						|
 | 
						|
  /// equals
 | 
						|
  virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
 | 
						|
    const SmartStereoProjectionFactor *e =
 | 
						|
        dynamic_cast<const SmartStereoProjectionFactor*>(&p);
 | 
						|
    return e && params_.linearizationMode == e->params_.linearizationMode
 | 
						|
        && Base::equals(p, tol);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Check if the new linearization point_ is the same as the one used for previous triangulation
 | 
						|
  bool decideIfTriangulate(const Cameras& cameras) const {
 | 
						|
    // several calls to linearize will be done from the same linearization point_, hence it is not needed to re-triangulate
 | 
						|
    // Note that this is not yet "selecting linearization", that will come later, and we only check if the
 | 
						|
    // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point_
 | 
						|
 | 
						|
    size_t m = cameras.size();
 | 
						|
 | 
						|
    bool retriangulate = false;
 | 
						|
 | 
						|
    // if we do not have a previous linearization point_ or the new linearization point_ includes more poses
 | 
						|
    if (cameraPosesTriangulation_.empty()
 | 
						|
        || cameras.size() != cameraPosesTriangulation_.size())
 | 
						|
      retriangulate = true;
 | 
						|
 | 
						|
    if (!retriangulate) {
 | 
						|
      for (size_t i = 0; i < cameras.size(); i++) {
 | 
						|
        if (!cameras[i].pose().equals(cameraPosesTriangulation_[i],
 | 
						|
            params_.retriangulationThreshold)) {
 | 
						|
          retriangulate = true; // at least two poses are different, hence we retriangulate
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (retriangulate) { // we store the current poses used for triangulation
 | 
						|
      cameraPosesTriangulation_.clear();
 | 
						|
      cameraPosesTriangulation_.reserve(m);
 | 
						|
      for (size_t i = 0; i < m; i++)
 | 
						|
        // cameraPosesTriangulation_[i] = cameras[i].pose();
 | 
						|
        cameraPosesTriangulation_.push_back(cameras[i].pose());
 | 
						|
    }
 | 
						|
 | 
						|
    return retriangulate; // if we arrive to this point_ all poses are the same and we don't need re-triangulation
 | 
						|
  }
 | 
						|
 | 
						|
//  /// triangulateSafe
 | 
						|
//  size_t triangulateSafe(const Values& values) const {
 | 
						|
//    return triangulateSafe(this->cameras(values));
 | 
						|
//  }
 | 
						|
 | 
						|
  /// triangulateSafe
 | 
						|
  TriangulationResult triangulateSafe(const Cameras& cameras) const {
 | 
						|
 | 
						|
    size_t m = cameras.size();
 | 
						|
    bool retriangulate = decideIfTriangulate(cameras);
 | 
						|
 | 
						|
    // triangulate stereo measurements by treating each stereocamera as a pair of monocular cameras
 | 
						|
    MonoCameras monoCameras;
 | 
						|
    MonoMeasurements monoMeasured;
 | 
						|
    for(size_t i = 0; i < m; i++) {
 | 
						|
      const Pose3 leftPose = cameras[i].pose();
 | 
						|
      const Cal3_S2 monoCal = cameras[i].calibration().calibration();
 | 
						|
      const MonoCamera leftCamera_i(leftPose,monoCal);
 | 
						|
      const Pose3 left_Pose_right = Pose3(Rot3(),Point3(cameras[i].baseline(),0.0,0.0));
 | 
						|
      const Pose3 rightPose = leftPose.compose( left_Pose_right );
 | 
						|
      const MonoCamera rightCamera_i(rightPose,monoCal);
 | 
						|
      const StereoPoint2 zi = measured_[i];
 | 
						|
      monoCameras.push_back(leftCamera_i);
 | 
						|
      monoMeasured.push_back(Point2(zi.uL(),zi.v()));
 | 
						|
      if(!std::isnan(zi.uR())){ // if right point is valid
 | 
						|
        monoCameras.push_back(rightCamera_i);
 | 
						|
        monoMeasured.push_back(Point2(zi.uR(),zi.v()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (retriangulate)
 | 
						|
      result_ = gtsam::triangulateSafe(monoCameras, monoMeasured,
 | 
						|
          params_.triangulation);
 | 
						|
    return result_;
 | 
						|
  }
 | 
						|
 | 
						|
  /// triangulate
 | 
						|
  bool triangulateForLinearize(const Cameras& cameras) const {
 | 
						|
    triangulateSafe(cameras); // imperative, might reset result_
 | 
						|
    return bool(result_);
 | 
						|
  }
 | 
						|
 | 
						|
  /// linearize returns a Hessianfactor that is an approximation of error(p)
 | 
						|
  boost::shared_ptr<RegularHessianFactor<Base::Dim> > createHessianFactor(
 | 
						|
      const Cameras& cameras, const double lambda = 0.0,  bool diagonalDamping =
 | 
						|
          false) const {
 | 
						|
 | 
						|
    size_t numKeys = this->keys_.size();
 | 
						|
    // Create structures for Hessian Factors
 | 
						|
    std::vector<Key> js;
 | 
						|
    std::vector<Matrix> Gs(numKeys * (numKeys + 1) / 2);
 | 
						|
    std::vector<Vector> gs(numKeys);
 | 
						|
 | 
						|
    if (this->measured_.size() != cameras.size()) {
 | 
						|
      std::cout
 | 
						|
          << "SmartStereoProjectionHessianFactor: this->measured_.size() inconsistent with input"
 | 
						|
          << std::endl;
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    triangulateSafe(cameras);
 | 
						|
 | 
						|
    if (params_.degeneracyMode == ZERO_ON_DEGENERACY && !result_) {
 | 
						|
      // failed: return"empty" Hessian
 | 
						|
      for(Matrix& m: Gs)
 | 
						|
        m = Matrix::Zero(Base::Dim, Base::Dim);
 | 
						|
      for(Vector& v: gs)
 | 
						|
        v = Vector::Zero(Base::Dim);
 | 
						|
      return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
 | 
						|
          Gs, gs, 0.0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
 | 
						|
    Base::FBlocks Fs;
 | 
						|
    Matrix F, E;
 | 
						|
    Vector b;
 | 
						|
    computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
 | 
						|
 | 
						|
    // Whiten using noise model
 | 
						|
    Base::whitenJacobians(Fs, E, b);
 | 
						|
 | 
						|
    // build augmented hessian
 | 
						|
    SymmetricBlockMatrix augmentedHessian = //
 | 
						|
        Cameras::SchurComplement(Fs, E, b, lambda, diagonalDamping);
 | 
						|
 | 
						|
    return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
 | 
						|
        augmentedHessian);
 | 
						|
  }
 | 
						|
 | 
						|
  // create factor
 | 
						|
//  boost::shared_ptr<RegularImplicitSchurFactor<StereoCamera> > createRegularImplicitSchurFactor(
 | 
						|
//      const Cameras& cameras, double lambda) const {
 | 
						|
//    if (triangulateForLinearize(cameras))
 | 
						|
//      return Base::createRegularImplicitSchurFactor(cameras, *result_, lambda);
 | 
						|
//    else
 | 
						|
//      // failed: return empty
 | 
						|
//      return boost::shared_ptr<RegularImplicitSchurFactor<StereoCamera> >();
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  /// create factor
 | 
						|
//  boost::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > createJacobianQFactor(
 | 
						|
//      const Cameras& cameras, double lambda) const {
 | 
						|
//    if (triangulateForLinearize(cameras))
 | 
						|
//      return Base::createJacobianQFactor(cameras, *result_, lambda);
 | 
						|
//    else
 | 
						|
//      // failed: return empty
 | 
						|
//      return boost::make_shared<JacobianFactorQ<Base::Dim, Base::ZDim> >(this->keys_);
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  /// Create a factor, takes values
 | 
						|
//  boost::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > createJacobianQFactor(
 | 
						|
//      const Values& values, double lambda) const {
 | 
						|
//    return createJacobianQFactor(this->cameras(values), lambda);
 | 
						|
//  }
 | 
						|
 | 
						|
  /// different (faster) way to compute Jacobian factor
 | 
						|
  boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
 | 
						|
      const Cameras& cameras, double lambda) const {
 | 
						|
    if (triangulateForLinearize(cameras))
 | 
						|
      return Base::createJacobianSVDFactor(cameras, *result_, lambda);
 | 
						|
    else
 | 
						|
      return boost::make_shared<JacobianFactorSVD<Base::Dim, ZDim> >(this->keys_);
 | 
						|
  }
 | 
						|
 | 
						|
//  /// linearize to a Hessianfactor
 | 
						|
//  virtual boost::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian(
 | 
						|
//      const Values& values, double lambda = 0.0) const {
 | 
						|
//    return createHessianFactor(this->cameras(values), lambda);
 | 
						|
//  }
 | 
						|
 | 
						|
//  /// linearize to an Implicit Schur factor
 | 
						|
//  virtual boost::shared_ptr<RegularImplicitSchurFactor<StereoCamera> > linearizeToImplicit(
 | 
						|
//      const Values& values, double lambda = 0.0) const {
 | 
						|
//    return createRegularImplicitSchurFactor(this->cameras(values), lambda);
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  /// linearize to a JacobianfactorQ
 | 
						|
//  virtual boost::shared_ptr<JacobianFactorQ<Base::Dim, Base::ZDim> > linearizeToJacobian(
 | 
						|
//      const Values& values, double lambda = 0.0) const {
 | 
						|
//    return createJacobianQFactor(this->cameras(values), lambda);
 | 
						|
//  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Linearize to Gaussian Factor
 | 
						|
   * @param values Values structure which must contain camera poses for this factor
 | 
						|
   * @return a Gaussian factor
 | 
						|
   */
 | 
						|
  boost::shared_ptr<GaussianFactor> linearizeDamped(const Cameras& cameras,
 | 
						|
      const double lambda = 0.0) const {
 | 
						|
    // depending on flag set on construction we may linearize to different linear factors
 | 
						|
    switch (params_.linearizationMode) {
 | 
						|
    case HESSIAN:
 | 
						|
      return createHessianFactor(cameras, lambda);
 | 
						|
//    case IMPLICIT_SCHUR:
 | 
						|
//      return createRegularImplicitSchurFactor(cameras, lambda);
 | 
						|
    case JACOBIAN_SVD:
 | 
						|
      return createJacobianSVDFactor(cameras, lambda);
 | 
						|
//    case JACOBIAN_Q:
 | 
						|
//      return createJacobianQFactor(cameras, lambda);
 | 
						|
    default:
 | 
						|
      throw std::runtime_error("SmartStereoFactorlinearize: unknown mode");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Linearize to Gaussian Factor
 | 
						|
   * @param values Values structure which must contain camera poses for this factor
 | 
						|
   * @return a Gaussian factor
 | 
						|
   */
 | 
						|
  boost::shared_ptr<GaussianFactor> linearizeDamped(const Values& values,
 | 
						|
      const double lambda = 0.0) const {
 | 
						|
    // depending on flag set on construction we may linearize to different linear factors
 | 
						|
    Cameras cameras = this->cameras(values);
 | 
						|
    return linearizeDamped(cameras, lambda);
 | 
						|
  }
 | 
						|
 | 
						|
  /// linearize
 | 
						|
  virtual boost::shared_ptr<GaussianFactor> linearize(
 | 
						|
      const Values& values) const {
 | 
						|
    return linearizeDamped(values);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Triangulate and compute derivative of error with respect to point
 | 
						|
   * @return whether triangulation worked
 | 
						|
   */
 | 
						|
  bool triangulateAndComputeE(Matrix& E, const Cameras& cameras) const {
 | 
						|
    bool nonDegenerate = triangulateForLinearize(cameras);
 | 
						|
    if (nonDegenerate)
 | 
						|
      cameras.project2(*result_, boost::none, E);
 | 
						|
    return nonDegenerate;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Triangulate and compute derivative of error with respect to point
 | 
						|
   * @return whether triangulation worked
 | 
						|
   */
 | 
						|
  bool triangulateAndComputeE(Matrix& E, const Values& values) const {
 | 
						|
    Cameras cameras = this->cameras(values);
 | 
						|
    return triangulateAndComputeE(E, cameras);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /// Compute F, E only (called below in both vanilla and SVD versions)
 | 
						|
  /// Assumes the point has been computed
 | 
						|
  /// Note E can be 2m*3 or 2m*2, in case point is degenerate
 | 
						|
  void computeJacobiansWithTriangulatedPoint(
 | 
						|
      FBlocks& Fs, 
 | 
						|
      Matrix& E, Vector& b,
 | 
						|
      const Cameras& cameras) const {
 | 
						|
 | 
						|
    if (!result_) {
 | 
						|
      throw ("computeJacobiansWithTriangulatedPoint");
 | 
						|
//      // Handle degeneracy
 | 
						|
//      // TODO check flag whether we should do this
 | 
						|
//      Unit3 backProjected; /* = cameras[0].backprojectPointAtInfinity(
 | 
						|
//          this->measured_.at(0)); */
 | 
						|
//
 | 
						|
//      Base::computeJacobians(Fs, E, b, cameras, backProjected);
 | 
						|
    } else {
 | 
						|
      // valid result: just return Base version
 | 
						|
      Base::computeJacobians(Fs, E, b, cameras, *result_);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Version that takes values, and creates the point
 | 
						|
  bool triangulateAndComputeJacobians(
 | 
						|
      FBlocks& Fs, Matrix& E, Vector& b,
 | 
						|
      const Values& values) const {
 | 
						|
    Cameras cameras = this->cameras(values);
 | 
						|
    bool nonDegenerate = triangulateForLinearize(cameras);
 | 
						|
    if (nonDegenerate)
 | 
						|
      computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
 | 
						|
    return nonDegenerate;
 | 
						|
  }
 | 
						|
 | 
						|
  /// takes values
 | 
						|
  bool triangulateAndComputeJacobiansSVD(
 | 
						|
      FBlocks& Fs, Matrix& Enull, Vector& b,
 | 
						|
      const Values& values) const {
 | 
						|
    Cameras cameras = this->cameras(values);
 | 
						|
    bool nonDegenerate = triangulateForLinearize(cameras);
 | 
						|
    if (nonDegenerate)
 | 
						|
      Base::computeJacobiansSVD(Fs, Enull, b, cameras, *result_);
 | 
						|
    return nonDegenerate;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Calculate vector of re-projection errors, before applying noise model
 | 
						|
  Vector reprojectionErrorAfterTriangulation(const Values& values) const {
 | 
						|
    Cameras cameras = this->cameras(values);
 | 
						|
    bool nonDegenerate = triangulateForLinearize(cameras);
 | 
						|
    if (nonDegenerate)
 | 
						|
      return Base::unwhitenedError(cameras, *result_);
 | 
						|
    else
 | 
						|
      return Vector::Zero(cameras.size() * Base::ZDim);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Calculate the error of the factor.
 | 
						|
   * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
 | 
						|
   * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
 | 
						|
   * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
 | 
						|
   */
 | 
						|
  double totalReprojectionError(const Cameras& cameras,
 | 
						|
      boost::optional<Point3> externalPoint = boost::none) const {
 | 
						|
 | 
						|
    if (externalPoint)
 | 
						|
      result_ = TriangulationResult(*externalPoint);
 | 
						|
    else
 | 
						|
      result_ = triangulateSafe(cameras);
 | 
						|
 | 
						|
    if (result_)
 | 
						|
      // All good, just use version in base class
 | 
						|
      return Base::totalReprojectionError(cameras, *result_);
 | 
						|
    else if (params_.degeneracyMode == HANDLE_INFINITY) {
 | 
						|
      throw(std::runtime_error("Backproject at infinity not implemented for SmartStereo."));
 | 
						|
//      // Otherwise, manage the exceptions with rotation-only factors
 | 
						|
//      const StereoPoint2& z0 = this->measured_.at(0);
 | 
						|
//      Unit3 backprojected; //= cameras.front().backprojectPointAtInfinity(z0);
 | 
						|
//
 | 
						|
//      return Base::totalReprojectionError(cameras, backprojected);
 | 
						|
    } else {
 | 
						|
      // if we don't want to manage the exceptions we discard the factor
 | 
						|
      return 0.0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Calculate total reprojection error
 | 
						|
  virtual double error(const Values& values) const {
 | 
						|
    if (this->active(values)) {
 | 
						|
      return totalReprojectionError(Base::cameras(values));
 | 
						|
    } else { // else of active flag
 | 
						|
      return 0.0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
 | 
						|
   */
 | 
						|
  virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
 | 
						|
      boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
 | 
						|
      boost::optional<Matrix&> E = boost::none) const
 | 
						|
  {
 | 
						|
    // when using stereo cameras, some of the measurements might be missing:
 | 
						|
    for(size_t i=0; i < cameras.size(); i++){
 | 
						|
      const StereoPoint2& z = measured_.at(i);
 | 
						|
      if(std::isnan(z.uR())) // if the right pixel is invalid
 | 
						|
      {
 | 
						|
        if(Fs){ // delete influence of right point on jacobian Fs
 | 
						|
          MatrixZD& Fi = Fs->at(i);
 | 
						|
          for(size_t ii=0; ii<Dim; ii++)
 | 
						|
            Fi(1,ii) = 0.0;
 | 
						|
        }
 | 
						|
        if(E) // delete influence of right point on jacobian E
 | 
						|
          E->row(ZDim * i + 1) = Matrix::Zero(1, E->cols());
 | 
						|
 | 
						|
        // set the corresponding entry of vector ue to zero
 | 
						|
        ue(ZDim * i + 1) = 0.0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /** return the landmark */
 | 
						|
    TriangulationResult point() const {
 | 
						|
      return result_;
 | 
						|
    }
 | 
						|
 | 
						|
    /** COMPUTE the landmark */
 | 
						|
    TriangulationResult point(const Values& values) const {
 | 
						|
      Cameras cameras = this->cameras(values);
 | 
						|
      return triangulateSafe(cameras);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Is result valid?
 | 
						|
    bool isValid() const { return result_.valid(); }
 | 
						|
 | 
						|
    /** return the degenerate state */
 | 
						|
    bool isDegenerate() const { return result_.degenerate(); }
 | 
						|
 | 
						|
    /** return the cheirality status flag */
 | 
						|
    bool isPointBehindCamera() const { return result_.behindCamera(); }
 | 
						|
 | 
						|
    /** return the outlier state */
 | 
						|
    bool isOutlier() const { return result_.outlier(); }
 | 
						|
 | 
						|
    /** return the farPoint state */
 | 
						|
    bool isFarPoint() const { return result_.farPoint(); }
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  /// Serialization function
 | 
						|
  friend class boost::serialization::access;
 | 
						|
  template<class ARCHIVE>
 | 
						|
  void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | 
						|
    ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
 | 
						|
    ar & BOOST_SERIALIZATION_NVP(params_.throwCheirality);
 | 
						|
    ar & BOOST_SERIALIZATION_NVP(params_.verboseCheirality);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// traits
 | 
						|
template<>
 | 
						|
struct traits<SmartStereoProjectionFactor > : public Testable<
 | 
						|
    SmartStereoProjectionFactor> {
 | 
						|
};
 | 
						|
 | 
						|
} // \ namespace gtsam
 |