124 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			124 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
| * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| * Atlanta, Georgia 30332-0415
 | |
| * All Rights Reserved
 | |
| * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
| * See LICENSE for the license information
 | |
| 
 | |
| * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
| * @file SmartProjectionFactorExample.cpp
 | |
| * @brief A stereo visual odometry example
 | |
| * @date May 30, 2014
 | |
| * @author Stephen Camp
 | |
| * @author Chris Beall
 | |
| */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * A smart projection factor example based on stereo data, throwing away the
 | |
|  * measurement from the right camera
 | |
|  *  -robot starts at origin
 | |
|  *  -moves forward, taking periodic stereo measurements
 | |
|  *  -makes monocular observations of many landmarks
 | |
|  */
 | |
| 
 | |
| #include <gtsam/slam/SmartProjectionPoseFactor.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| #include <gtsam/geometry/Cal3_S2Stereo.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/nonlinear/NonlinearEquality.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| #include <string>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char** argv){
 | |
| 
 | |
|   typedef PinholePose<Cal3_S2> Camera;
 | |
|   typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
 | |
| 
 | |
|   Values initial_estimate;
 | |
|   NonlinearFactorGraph graph;
 | |
|   const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,1);
 | |
| 
 | |
|   string calibration_loc = findExampleDataFile("VO_calibration.txt");
 | |
|   string pose_loc = findExampleDataFile("VO_camera_poses_large.txt");
 | |
|   string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt");
 | |
| 
 | |
|   //read camera calibration info from file
 | |
|   // focal lengths fx, fy, skew s, principal point u0, v0, baseline b
 | |
|   cout << "Reading calibration info" << endl;
 | |
|   ifstream calibration_file(calibration_loc.c_str());
 | |
| 
 | |
|   double fx, fy, s, u0, v0, b;
 | |
|   calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
 | |
|   const Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u0, v0));
 | |
| 
 | |
|   cout << "Reading camera poses" << endl;
 | |
|   ifstream pose_file(pose_loc.c_str());
 | |
| 
 | |
|   int pose_index;
 | |
|   MatrixRowMajor m(4,4);
 | |
|   //read camera pose parameters and use to make initial estimates of camera poses
 | |
|   while (pose_file >> pose_index) {
 | |
|     for (int i = 0; i < 16; i++)
 | |
|       pose_file >> m.data()[i];
 | |
|     initial_estimate.insert(pose_index, Pose3(m));
 | |
|   }
 | |
| 
 | |
|   // landmark keys
 | |
|   size_t landmark_key;
 | |
| 
 | |
|   // pixel coordinates uL, uR, v (same for left/right images due to rectification)
 | |
|   // landmark coordinates X, Y, Z in camera frame, resulting from triangulation
 | |
|   double uL, uR, v, X, Y, Z;
 | |
|   ifstream factor_file(factor_loc.c_str());
 | |
|   cout << "Reading stereo factors" << endl;
 | |
| 
 | |
|   //read stereo measurements and construct smart factors
 | |
| 
 | |
|   SmartFactor::shared_ptr factor(new SmartFactor(model, K));
 | |
|   size_t current_l = 3;   // hardcoded landmark ID from first measurement
 | |
| 
 | |
|   while (factor_file >> pose_index >> landmark_key >> uL >> uR >> v >> X >> Y >> Z) {
 | |
| 
 | |
|     if(current_l != landmark_key) {
 | |
|       graph.push_back(factor);
 | |
|       factor = SmartFactor::shared_ptr(new SmartFactor(model, K));
 | |
|       current_l = landmark_key;
 | |
|     }
 | |
|     factor->add(Point2(uL,v), pose_index);
 | |
|   }
 | |
| 
 | |
|   Pose3 firstPose = initial_estimate.at<Pose3>(1);
 | |
|   //constrain the first pose such that it cannot change from its original value during optimization
 | |
|   // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
 | |
|   // QR is much slower than Cholesky, but numerically more stable
 | |
|   graph.emplace_shared<NonlinearEquality<Pose3> >(1,firstPose);
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   cout << "Optimizing" << endl;
 | |
|   //create Levenberg-Marquardt optimizer to optimize the factor graph
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, initial_estimate, params);
 | |
|   Values result = optimizer.optimize();
 | |
| 
 | |
|   cout << "Final result sample:" << endl;
 | |
|   Values pose_values = result.filter<Pose3>();
 | |
|   pose_values.print("Final camera poses:\n");
 | |
| 
 | |
|   return 0;
 | |
| }
 |