409 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			409 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  BetweenFactorEM.h
 | |
|  *  @author Vadim Indelman
 | |
|  **/
 | |
| #pragma once
 | |
| 
 | |
| #include <ostream>
 | |
| 
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/base/Lie.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/linear/GaussianFactor.h>
 | |
| #include <gtsam/nonlinear/Marginals.h>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /**
 | |
|    * A class for a measurement predicted by "between(config[key1],config[key2])"
 | |
|    * @tparam VALUE the Value type
 | |
|    * @addtogroup SLAM
 | |
|    */
 | |
|   template<class VALUE>
 | |
|   class BetweenFactorEM: public NonlinearFactor {
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     typedef VALUE T;
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     typedef BetweenFactorEM<VALUE> This;
 | |
|     typedef gtsam::NonlinearFactor Base;
 | |
| 
 | |
|     gtsam::Key key1_;
 | |
|     gtsam::Key key2_;
 | |
| 
 | |
|     VALUE measured_; /** The measurement */
 | |
| 
 | |
|     SharedGaussian model_inlier_;
 | |
|     SharedGaussian model_outlier_;
 | |
| 
 | |
|     double prior_inlier_;
 | |
|     double prior_outlier_;
 | |
| 
 | |
|     bool flag_bump_up_near_zero_probs_;
 | |
| 
 | |
|     /** concept check by type */
 | |
|     GTSAM_CONCEPT_LIE_TYPE(T)
 | |
|     GTSAM_CONCEPT_TESTABLE_TYPE(T)
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     // shorthand for a smart pointer to a factor
 | |
|     typedef typename boost::shared_ptr<BetweenFactorEM> shared_ptr;
 | |
| 
 | |
|     /** default constructor - only use for serialization */
 | |
|     BetweenFactorEM() {}
 | |
| 
 | |
|     /** Constructor */
 | |
|     BetweenFactorEM(Key key1, Key key2, const VALUE& measured,
 | |
|         const SharedGaussian& model_inlier, const SharedGaussian& model_outlier,
 | |
|         const double prior_inlier, const double prior_outlier, const bool flag_bump_up_near_zero_probs = false) :
 | |
|           Base(cref_list_of<2>(key1)(key2)), key1_(key1), key2_(key2), measured_(measured),
 | |
|           model_inlier_(model_inlier), model_outlier_(model_outlier),
 | |
|           prior_inlier_(prior_inlier), prior_outlier_(prior_outlier), flag_bump_up_near_zero_probs_(flag_bump_up_near_zero_probs){
 | |
|     }
 | |
| 
 | |
|     virtual ~BetweenFactorEM() {}
 | |
| 
 | |
| 
 | |
|     /** implement functions needed for Testable */
 | |
| 
 | |
|     /** print */
 | |
|     virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
|       std::cout << s << "BetweenFactorEM("
 | |
|           << keyFormatter(key1_) << ","
 | |
|           << keyFormatter(key2_) << ")\n";
 | |
|       measured_.print("  measured: ");
 | |
|       model_inlier_->print("  noise model inlier: ");
 | |
|       model_outlier_->print("  noise model outlier: ");
 | |
|       std::cout << "(prior_inlier, prior_outlier_) = ("
 | |
|                 << prior_inlier_ << ","
 | |
|                 << prior_outlier_ << ")\n";
 | |
|       //      Base::print(s, keyFormatter);
 | |
|     }
 | |
| 
 | |
|     /** equals */
 | |
|     virtual bool equals(const NonlinearFactor& f, double tol=1e-9) const {
 | |
|       const This *t =  dynamic_cast<const This*> (&f);
 | |
| 
 | |
|       if(t && Base::equals(f))
 | |
|         return key1_ == t->key1_ && key2_ == t->key2_ &&
 | |
|             //            model_inlier_->equals(t->model_inlier_ ) && // TODO: fix here
 | |
|             //            model_outlier_->equals(t->model_outlier_ ) &&
 | |
|             prior_outlier_ == t->prior_outlier_ && prior_inlier_ == t->prior_inlier_ && measured_.equals(t->measured_);
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /** implement functions needed to derive from Factor */
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     virtual double error(const gtsam::Values& x) const {
 | |
|       return whitenedError(x).squaredNorm();
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     /**
 | |
|      * Linearize a non-linearFactorN to get a gtsam::GaussianFactor,
 | |
|      * \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$
 | |
|      * Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
 | |
|      */
 | |
|     /* This version of linearize recalculates the noise model each time */
 | |
|     virtual boost::shared_ptr<gtsam::GaussianFactor> linearize(const gtsam::Values& x) const {
 | |
|       // Only linearize if the factor is active
 | |
|       if (!this->active(x))
 | |
|         return boost::shared_ptr<gtsam::JacobianFactor>();
 | |
| 
 | |
|       //std::cout<<"About to linearize"<<std::endl;
 | |
|       gtsam::Matrix A1, A2;
 | |
|       std::vector<gtsam::Matrix> A(this->size());
 | |
|       gtsam::Vector b = -whitenedError(x, A);
 | |
|       A1 = A[0];
 | |
|       A2 = A[1];
 | |
| 
 | |
|       return gtsam::GaussianFactor::shared_ptr(
 | |
|           new gtsam::JacobianFactor(key1_, A1, key2_, A2, b, gtsam::noiseModel::Unit::Create(b.size())));
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     gtsam::Vector whitenedError(const gtsam::Values& x,
 | |
|         boost::optional<std::vector<gtsam::Matrix>&> H = boost::none) const {
 | |
| 
 | |
|       bool debug = true;
 | |
| 
 | |
|       const T& p1 = x.at<T>(key1_);
 | |
|       const T& p2 = x.at<T>(key2_);
 | |
| 
 | |
|       Matrix H1, H2;
 | |
| 
 | |
|       T hx = p1.between(p2, H1, H2); // h(x)
 | |
|       // manifold equivalent of h(x)-z -> log(z,h(x))
 | |
| 
 | |
|       Vector err = measured_.localCoordinates(hx);
 | |
| 
 | |
|       // Calculate indicator probabilities (inlier and outlier)
 | |
|       Vector p_inlier_outlier = calcIndicatorProb(x);
 | |
|       double p_inlier  = p_inlier_outlier[0];
 | |
|       double p_outlier = p_inlier_outlier[1];
 | |
| 
 | |
|       Vector err_wh_inlier  = model_inlier_->whiten(err);
 | |
|       Vector err_wh_outlier = model_outlier_->whiten(err);
 | |
| 
 | |
|       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R();
 | |
|       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R();
 | |
| 
 | |
|       Vector err_wh_eq;
 | |
|       err_wh_eq.resize(err_wh_inlier.rows()*2);
 | |
|       err_wh_eq << sqrt(p_inlier) * err_wh_inlier.array() , sqrt(p_outlier) * err_wh_outlier.array();
 | |
| 
 | |
|       if (H){
 | |
|         // stack Jacobians for the two indicators for each of the key
 | |
| 
 | |
|         Matrix H1_inlier  = sqrt(p_inlier)*model_inlier_->Whiten(H1);
 | |
|         Matrix H1_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H1);
 | |
|         Matrix H1_aug = gtsam::stack(2, &H1_inlier, &H1_outlier);
 | |
| 
 | |
|         Matrix H2_inlier  = sqrt(p_inlier)*model_inlier_->Whiten(H2);
 | |
|         Matrix H2_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H2);
 | |
|         Matrix H2_aug = gtsam::stack(2, &H2_inlier, &H2_outlier);
 | |
| 
 | |
|         (*H)[0].resize(H1_aug.rows(),H1_aug.cols());
 | |
|         (*H)[1].resize(H2_aug.rows(),H2_aug.cols());
 | |
| 
 | |
|         (*H)[0] = H1_aug;
 | |
|         (*H)[1] = H2_aug;
 | |
|       }
 | |
| 
 | |
|       if (debug){
 | |
|         //        std::cout<<"unwhitened error: "<<err[0]<<" "<<err[1]<<" "<<err[2]<<std::endl;
 | |
|         //        std::cout<<"err_wh_inlier: "<<err_wh_inlier[0]<<" "<<err_wh_inlier[1]<<" "<<err_wh_inlier[2]<<std::endl;
 | |
|         //        std::cout<<"err_wh_outlier: "<<err_wh_outlier[0]<<" "<<err_wh_outlier[1]<<" "<<err_wh_outlier[2]<<std::endl;
 | |
|         //
 | |
|         //        std::cout<<"p_inlier, p_outlier, sumP: "<<p_inlier<<" "<<p_outlier<<" " << sumP << std::endl;
 | |
|         //
 | |
|         //        std::cout<<"prior_inlier_, prior_outlier_: "<<prior_inlier_<<" "<<prior_outlier_<< std::endl;
 | |
|         //
 | |
|         //        double s_inl  = -0.5 * err_wh_inlier.dot(err_wh_inlier);
 | |
|         //        double s_outl = -0.5 * err_wh_outlier.dot(err_wh_outlier);
 | |
|         //        std::cout<<"s_inl, s_outl: "<<s_inl<<" "<<s_outl<<std::endl;
 | |
|         //
 | |
|         //        std::cout<<"norm of invCov_inlier, invCov_outlier: "<<invCov_inlier.norm()<<" "<<invCov_outlier.norm()<<std::endl;
 | |
|         //        double q_inl  = invCov_inlier.norm() * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) );
 | |
|         //        double q_outl = invCov_outlier.norm() * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) );
 | |
|         //        std::cout<<"q_inl, q_outl: "<<q_inl<<" "<<q_outl<<std::endl;
 | |
| 
 | |
|         //        Matrix Cov_inlier  = invCov_inlier.inverse();
 | |
|         //        Matrix Cov_outlier = invCov_outlier.inverse();
 | |
|         //        std::cout<<"Cov_inlier: "<<std::endl<<
 | |
|         //            Cov_inlier(0,0) << " " << Cov_inlier(0,1) << " " << Cov_inlier(0,2) <<std::endl<<
 | |
|         //            Cov_inlier(1,0) << " " << Cov_inlier(1,1) << " " << Cov_inlier(1,2) <<std::endl<<
 | |
|         //            Cov_inlier(2,0) << " " << Cov_inlier(2,1) << " " << Cov_inlier(2,2) <<std::endl;
 | |
|         //        std::cout<<"Cov_outlier: "<<std::endl<<
 | |
|         //                    Cov_outlier(0,0) << " " << Cov_outlier(0,1) << " " << Cov_outlier(0,2) <<std::endl<<
 | |
|         //                    Cov_outlier(1,0) << " " << Cov_outlier(1,1) << " " << Cov_outlier(1,2) <<std::endl<<
 | |
|         //                    Cov_outlier(2,0) << " " << Cov_outlier(2,1) << " " << Cov_outlier(2,2) <<std::endl;
 | |
|         //        std::cout<<"===="<<std::endl;
 | |
|       }
 | |
| 
 | |
| 
 | |
|       return err_wh_eq;
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     gtsam::Vector calcIndicatorProb(const gtsam::Values& x) const {
 | |
| 
 | |
|       bool debug = false;
 | |
| 
 | |
|       Vector err =  unwhitenedError(x);
 | |
| 
 | |
|       // Calculate indicator probabilities (inlier and outlier)
 | |
|       Vector err_wh_inlier  = model_inlier_->whiten(err);
 | |
|       Vector err_wh_outlier = model_outlier_->whiten(err);
 | |
| 
 | |
|       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R();
 | |
|       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R();
 | |
| 
 | |
|       double p_inlier  = prior_inlier_ * std::sqrt(invCov_inlier.determinant()) * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) );
 | |
|       double p_outlier = prior_outlier_ * std::sqrt(invCov_outlier.determinant()) * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) );
 | |
| 
 | |
|       if (debug){
 | |
|         std::cout<<"in calcIndicatorProb. err_unwh: "<<err[0]<<", "<<err[1]<<", "<<err[2]<<std::endl;
 | |
|         std::cout<<"in calcIndicatorProb. err_wh_inlier: "<<err_wh_inlier[0]<<", "<<err_wh_inlier[1]<<", "<<err_wh_inlier[2]<<std::endl;
 | |
|         std::cout<<"in calcIndicatorProb. err_wh_inlier.dot(err_wh_inlier): "<<err_wh_inlier.dot(err_wh_inlier)<<std::endl;
 | |
|         std::cout<<"in calcIndicatorProb. err_wh_outlier.dot(err_wh_outlier): "<<err_wh_outlier.dot(err_wh_outlier)<<std::endl;
 | |
| 
 | |
|         std::cout<<"in calcIndicatorProb. p_inlier, p_outlier before normalization: "<<p_inlier<<", "<<p_outlier<<std::endl;
 | |
|       }
 | |
| 
 | |
|       double sumP = p_inlier + p_outlier;
 | |
|       p_inlier  /= sumP;
 | |
|       p_outlier /= sumP;
 | |
| 
 | |
|       if (flag_bump_up_near_zero_probs_){
 | |
|         // Bump up near-zero probabilities (as in linerFlow.h)
 | |
|         double minP = 0.05; // == 0.1 / 2 indicator variables
 | |
|         if (p_inlier < minP || p_outlier < minP){
 | |
|           if (p_inlier < minP)
 | |
|             p_inlier = minP;
 | |
|           if (p_outlier < minP)
 | |
|             p_outlier = minP;
 | |
|           sumP = p_inlier + p_outlier;
 | |
|           p_inlier  /= sumP;
 | |
|           p_outlier /= sumP;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return (Vector(2) << p_inlier, p_outlier);
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     gtsam::Vector unwhitenedError(const gtsam::Values& x) const {
 | |
| 
 | |
|       const T& p1 = x.at<T>(key1_);
 | |
|       const T& p2 = x.at<T>(key2_);
 | |
| 
 | |
|       Matrix H1, H2;
 | |
| 
 | |
|       T hx = p1.between(p2, H1, H2); // h(x)
 | |
| 
 | |
|       return measured_.localCoordinates(hx);
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     void set_flag_bump_up_near_zero_probs(bool flag) {
 | |
|       flag_bump_up_near_zero_probs_ = flag;
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     bool get_flag_bump_up_near_zero_probs() const {
 | |
|       return flag_bump_up_near_zero_probs_;
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     SharedGaussian get_model_inlier() const {
 | |
|     	return model_inlier_;
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     SharedGaussian get_model_outlier() const {
 | |
|     	return model_outlier_;
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     Matrix get_model_inlier_cov() const {
 | |
|     	return (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     Matrix get_model_outlier_cov() const {
 | |
|     	return (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){
 | |
|     	/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
 | |
|     	 * (note these are given in the E step, where indicator probabilities are calculated).
 | |
|     	 *
 | |
|     	 * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
 | |
|     	 * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
 | |
|     	 *
 | |
|     	 * TODO: improve efficiency (info form)
 | |
|     	 */
 | |
| 
 | |
|     	 // get joint covariance of the involved states
 | |
|     	 std::vector<gtsam::Key> Keys;
 | |
|     	 Keys.push_back(key1_);
 | |
|     	 Keys.push_back(key2_);
 | |
|     	 Marginals marginals( graph, values, Marginals::QR );
 | |
|     	 JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
 | |
|     	 Matrix cov1 = joint_marginal12(key1_, key1_);
 | |
|     	 Matrix cov2 = joint_marginal12(key2_, key2_);
 | |
|     	 Matrix cov12 = joint_marginal12(key1_, key2_);
 | |
| 
 | |
|     	 updateNoiseModels_givenCovs(values, cov1, cov2, cov12);
 | |
|     }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|         void updateNoiseModels_givenCovs(const gtsam::Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){
 | |
|         	/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
 | |
|         	 * (note these are given in the E step, where indicator probabilities are calculated).
 | |
|         	 *
 | |
|         	 * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
 | |
|         	 * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
 | |
|         	 *
 | |
|         	 * TODO: improve efficiency (info form)
 | |
|         	 */
 | |
| 
 | |
|         	 const T& p1 = values.at<T>(key1_);
 | |
|         	 const T& p2 = values.at<T>(key2_);
 | |
| 
 | |
|         	 Matrix H1, H2;
 | |
|         	 T hx = p1.between(p2, H1, H2); // h(x)
 | |
| 
 | |
|         	 Matrix H;
 | |
|         	 H.resize(H1.rows(), H1.rows()+H2.rows());
 | |
|         	 H << H1, H2; // H = [H1 H2]
 | |
| 
 | |
|         	 Matrix joint_cov;
 | |
|         	 joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
 | |
|         	 joint_cov << cov1, cov12,
 | |
|         			 cov12.transpose(), cov2;
 | |
| 
 | |
|         	 Matrix cov_state = H*joint_cov*H.transpose();
 | |
| 
 | |
|         	 //    	 model_inlier_->print("before:");
 | |
| 
 | |
|         	 // update inlier and outlier noise models
 | |
|         	 Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
 | |
|         	 model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
 | |
| 
 | |
|         	 Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
 | |
|         	 model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
 | |
| 
 | |
|         	 //    	 model_inlier_->print("after:");
 | |
|         	 //    	 std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
 | |
|         }
 | |
| 
 | |
|     /* ************************************************************************* */
 | |
|     /** return the measured */
 | |
|     const VALUE& measured() const {
 | |
|       return measured_;
 | |
|     }
 | |
| 
 | |
|     /** number of variables attached to this factor */
 | |
|     std::size_t size() const {
 | |
|       return 2;
 | |
|     }
 | |
| 
 | |
|     virtual size_t dim() const {
 | |
|       return model_inlier_->R().rows() + model_inlier_->R().cols();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     /** Serialization function */
 | |
|     friend class boost::serialization::access;
 | |
|     template<class ARCHIVE>
 | |
|     void serialize(ARCHIVE & ar, const unsigned int version) {
 | |
|       ar & boost::serialization::make_nvp("NonlinearFactor",
 | |
|           boost::serialization::base_object<Base>(*this));
 | |
|       ar & BOOST_SERIALIZATION_NVP(measured_);
 | |
|     }
 | |
|   }; // \class BetweenFactorEM
 | |
| 
 | |
| } /// namespace gtsam
 |