163 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file   testPoseToPointFactor.cpp
 | 
						|
 * @brief
 | 
						|
 * @author David Wisth
 | 
						|
 * @author Luca Carlone
 | 
						|
 * @date   June 20, 2020
 | 
						|
 */
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
#include <gtsam_unstable/slam/PoseToPointFactor.h>
 | 
						|
 | 
						|
using namespace gtsam;
 | 
						|
using namespace gtsam::noiseModel;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Verify zero error when there is no noise
 | 
						|
TEST(PoseToPointFactor, errorNoiseless_2D) {
 | 
						|
  Pose2 pose = Pose2::Identity();
 | 
						|
  Point2 point(1.0, 2.0);
 | 
						|
  Point2 noise(0.0, 0.0);
 | 
						|
  Point2 measured = point + noise;
 | 
						|
 | 
						|
  Key pose_key(1);
 | 
						|
  Key point_key(2);
 | 
						|
  PoseToPointFactor<Pose2,Point2> factor(pose_key, point_key, measured,
 | 
						|
                           Isotropic::Sigma(2, 0.05));
 | 
						|
  Vector expectedError = Vector2(0.0, 0.0);
 | 
						|
  Vector actualError = factor.evaluateError(pose, point);
 | 
						|
  EXPECT(assert_equal(expectedError, actualError, 1E-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Verify expected error in test scenario
 | 
						|
TEST(PoseToPointFactor, errorNoise_2D) {
 | 
						|
  Pose2 pose = Pose2::Identity();
 | 
						|
  Point2 point(1.0, 2.0);
 | 
						|
  Point2 noise(-1.0, 0.5);
 | 
						|
  Point2 measured = point + noise;
 | 
						|
 | 
						|
  Key pose_key(1);
 | 
						|
  Key point_key(2);
 | 
						|
  PoseToPointFactor<Pose2,Point2> factor(pose_key, point_key, measured,
 | 
						|
                           Isotropic::Sigma(2, 0.05));
 | 
						|
  Vector expectedError = -noise;
 | 
						|
  Vector actualError = factor.evaluateError(pose, point);
 | 
						|
  EXPECT(assert_equal(expectedError, actualError, 1E-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Check Jacobians are correct
 | 
						|
TEST(PoseToPointFactor, jacobian_2D) {
 | 
						|
  // Measurement
 | 
						|
  gtsam::Point2 l_meas(1, 2);
 | 
						|
 | 
						|
  // Linearisation point
 | 
						|
  gtsam::Point2 p_t(-5, 12);
 | 
						|
  gtsam::Rot2 p_R(1.5 * M_PI);
 | 
						|
  Pose2 p(p_R, p_t);
 | 
						|
 | 
						|
  gtsam::Point2 l(3, 0);
 | 
						|
 | 
						|
  // Factor
 | 
						|
  Key pose_key(1);
 | 
						|
  Key point_key(2);
 | 
						|
  SharedGaussian noise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
 | 
						|
  PoseToPointFactor<Pose2,Point2> factor(pose_key, point_key, l_meas, noise);
 | 
						|
 | 
						|
  // Calculate numerical derivatives
 | 
						|
  auto f = [&factor] (const Pose2& pose, const Point2& pt) {
 | 
						|
	  return factor.evaluateError(pose, pt);
 | 
						|
  };
 | 
						|
  Matrix numerical_H1 = numericalDerivative21<Vector, Pose2, Point2>(f, p, l);
 | 
						|
  Matrix numerical_H2 = numericalDerivative22<Vector, Pose2, Point2>(f, p, l);
 | 
						|
 | 
						|
  // Use the factor to calculate the derivative
 | 
						|
  Matrix actual_H1;
 | 
						|
  Matrix actual_H2;
 | 
						|
  factor.evaluateError(p, l, actual_H1, actual_H2);
 | 
						|
 | 
						|
  // Verify we get the expected error
 | 
						|
  EXPECT(assert_equal(numerical_H1, actual_H1, 1e-8));
 | 
						|
  EXPECT(assert_equal(numerical_H2, actual_H2, 1e-8));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Verify zero error when there is no noise
 | 
						|
TEST(PoseToPointFactor, errorNoiseless_3D) {
 | 
						|
  Pose3 pose = Pose3::Identity();
 | 
						|
  Point3 point(1.0, 2.0, 3.0);
 | 
						|
  Point3 noise(0.0, 0.0, 0.0);
 | 
						|
  Point3 measured = point + noise;
 | 
						|
 | 
						|
  Key pose_key(1);
 | 
						|
  Key point_key(2);
 | 
						|
  PoseToPointFactor<Pose3,Point3> factor(pose_key, point_key, measured,
 | 
						|
                           Isotropic::Sigma(3, 0.05));
 | 
						|
  Vector expectedError = Vector3(0.0, 0.0, 0.0);
 | 
						|
  Vector actualError = factor.evaluateError(pose, point);
 | 
						|
  EXPECT(assert_equal(expectedError, actualError, 1E-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Verify expected error in test scenario
 | 
						|
TEST(PoseToPointFactor, errorNoise_3D) {
 | 
						|
  Pose3 pose = Pose3::Identity();
 | 
						|
  Point3 point(1.0, 2.0, 3.0);
 | 
						|
  Point3 noise(-1.0, 0.5, 0.3);
 | 
						|
  Point3 measured = point + noise;
 | 
						|
 | 
						|
  Key pose_key(1);
 | 
						|
  Key point_key(2);
 | 
						|
  PoseToPointFactor<Pose3,Point3> factor(pose_key, point_key, measured,
 | 
						|
                           Isotropic::Sigma(3, 0.05));
 | 
						|
  Vector expectedError = -noise;
 | 
						|
  Vector actualError = factor.evaluateError(pose, point);
 | 
						|
  EXPECT(assert_equal(expectedError, actualError, 1E-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Check Jacobians are correct
 | 
						|
TEST(PoseToPointFactor, jacobian_3D) {
 | 
						|
  // Measurement
 | 
						|
  gtsam::Point3 l_meas = gtsam::Point3(1, 2, 3);
 | 
						|
 | 
						|
  // Linearisation point
 | 
						|
  gtsam::Point3 p_t = gtsam::Point3(-5, 12, 2);
 | 
						|
  gtsam::Rot3 p_R = gtsam::Rot3::RzRyRx(1.5 * M_PI, -0.3 * M_PI, 0.4 * M_PI);
 | 
						|
  Pose3 p(p_R, p_t);
 | 
						|
 | 
						|
  gtsam::Point3 l = gtsam::Point3(3, 0, 5);
 | 
						|
 | 
						|
  // Factor
 | 
						|
  Key pose_key(1);
 | 
						|
  Key point_key(2);
 | 
						|
  SharedGaussian noise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1));
 | 
						|
  PoseToPointFactor<Pose3,Point3> factor(pose_key, point_key, l_meas, noise);
 | 
						|
 | 
						|
  // Calculate numerical derivatives
 | 
						|
  auto f = [&factor] (const Pose3& pose, const Point3& pt) {
 | 
						|
	  return factor.evaluateError(pose, pt);
 | 
						|
  };
 | 
						|
 | 
						|
  Matrix numerical_H1 = numericalDerivative21<Vector, Pose3, Point3>(f, p, l);
 | 
						|
  Matrix numerical_H2 = numericalDerivative22<Vector, Pose3, Point3>(f, p, l);
 | 
						|
 | 
						|
  // Use the factor to calculate the derivative
 | 
						|
  Matrix actual_H1;
 | 
						|
  Matrix actual_H2;
 | 
						|
  factor.evaluateError(p, l, actual_H1, actual_H2);
 | 
						|
 | 
						|
  // Verify we get the expected error
 | 
						|
  EXPECT(assert_equal(numerical_H1, actual_H1, 1e-8));
 | 
						|
  EXPECT(assert_equal(numerical_H2, actual_H2, 1e-8));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 |