158 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			158 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
| * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| * Atlanta, Georgia 30332-0415
 | |
| * All Rights Reserved
 | |
| * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
| * See LICENSE for the license information
 | |
| 
 | |
| * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
| * @file ConcurrentCalibration.cpp
 | |
| * @brief First step towards estimating monocular calibration in concurrent
 | |
| * filter/smoother framework. To start with, just batch LM.
 | |
| * @date June 11, 2014
 | |
| * @author Chris Beall
 | |
| */
 | |
| 
 | |
| 
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/nonlinear/utilities.h>
 | |
| #include <gtsam/nonlinear/NonlinearEquality.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam/slam/GeneralSFMFactor.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| 
 | |
| #include <string>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using symbol_shorthand::K;
 | |
| using symbol_shorthand::L;
 | |
| using symbol_shorthand::X;
 | |
| 
 | |
| int main(int argc, char** argv){
 | |
| 
 | |
|   Values initial_estimate;
 | |
|   NonlinearFactorGraph graph;
 | |
|   const auto model = noiseModel::Isotropic::Sigma(2,1);
 | |
| 
 | |
|   string calibration_loc = findExampleDataFile("VO_calibration00s.txt");
 | |
|   string pose_loc = findExampleDataFile("VO_camera_poses00s.txt");
 | |
|   string factor_loc = findExampleDataFile("VO_stereo_factors00s.txt");
 | |
| 
 | |
|   //read camera calibration info from file
 | |
|   // focal lengths fx, fy, skew s, principal point u0, v0, baseline b
 | |
|   double fx, fy, s, u0, v0, b;
 | |
|   ifstream calibration_file(calibration_loc.c_str());
 | |
|   cout << "Reading calibration info" << endl;
 | |
|   calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
 | |
| 
 | |
|   //create stereo camera calibration object
 | |
|   const Cal3_S2 true_K(fx,fy,s,u0,v0);
 | |
|   const Cal3_S2 noisy_K(fx*1.2,fy*1.2,s,u0-10,v0+10);
 | |
| 
 | |
|   initial_estimate.insert(K(0), noisy_K);
 | |
| 
 | |
|   auto calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 1e-5, 100, 100).finished());
 | |
|   graph.addPrior(K(0), noisy_K, calNoise);
 | |
| 
 | |
| 
 | |
|   ifstream pose_file(pose_loc.c_str());
 | |
|   cout << "Reading camera poses" << endl;
 | |
|   int pose_id;
 | |
|   MatrixRowMajor m(4,4);
 | |
|   //read camera pose parameters and use to make initial estimates of camera poses
 | |
|   while (pose_file >> pose_id) {
 | |
|     for (int i = 0; i < 16; i++) {
 | |
|       pose_file >> m.data()[i];
 | |
|     }
 | |
|     initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
 | |
|   }
 | |
| 
 | |
|   auto poseNoise = noiseModel::Isotropic::Sigma(6, 0.01);
 | |
|   graph.addPrior(Symbol('x', pose_id), Pose3(m), poseNoise);
 | |
| 
 | |
|   // camera and landmark keys
 | |
|   size_t x, l;
 | |
| 
 | |
|   // pixel coordinates uL, uR, v (same for left/right images due to rectification)
 | |
|   // landmark coordinates X, Y, Z in camera frame, resulting from triangulation
 | |
|   double uL, uR, v, _X, Y, Z;
 | |
|   ifstream factor_file(factor_loc.c_str());
 | |
|   cout << "Reading stereo factors" << endl;
 | |
|   //read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
 | |
|   while (factor_file >> x >> l >> uL >> uR >> v >> _X >> Y >> Z) {
 | |
| //    graph.emplace_shared<GenericStereoFactor<Pose3, Point3> >(StereoPoint2(uL, uR, v), model, X(x), L(l), K);
 | |
| 
 | |
|     graph.emplace_shared<GeneralSFMFactor2<Cal3_S2> >(Point2(uL,v), model, X(x), L(l), K(0));
 | |
| 
 | |
| 
 | |
|     //if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
 | |
|     if (!initial_estimate.exists(L(l))) {
 | |
|       Pose3 camPose = initial_estimate.at<Pose3>(X(x));
 | |
|       //transformFrom() transforms the input Point3 from the camera pose space, camPose, to the global space
 | |
|       Point3 worldPoint = camPose.transformFrom(Point3(_X, Y, Z));
 | |
|       initial_estimate.insert(L(l), worldPoint);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
 | |
|   //constrain the first pose such that it cannot change from its original value during optimization
 | |
|   // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
 | |
|   // QR is much slower than Cholesky, but numerically more stable
 | |
|   graph.emplace_shared<NonlinearEquality<Pose3> >(Symbol('x',1),first_pose);
 | |
| 
 | |
|   cout << "Optimizing" << endl;
 | |
|   LevenbergMarquardtParams params;
 | |
|   params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   //create Levenberg-Marquardt optimizer to optimize the factor graph
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, initial_estimate,params);
 | |
| //  Values result = optimizer.optimize();
 | |
| 
 | |
|   string K_values_file = "K_values.txt";
 | |
|   ofstream stream_K(K_values_file.c_str());
 | |
| 
 | |
|   double currentError;
 | |
| 
 | |
| 
 | |
|   stream_K << optimizer.iterations() << " " << optimizer.values().at<Cal3_S2>(K(0)).vector().transpose() << endl;
 | |
| 
 | |
| 
 | |
|   // Iterative loop
 | |
|   do {
 | |
|     // Do next iteration
 | |
|     currentError = optimizer.error();
 | |
|     optimizer.iterate();
 | |
| 
 | |
|     stream_K << optimizer.iterations() << " " << optimizer.values().at<Cal3_S2>(K(0)).vector().transpose() << endl;
 | |
| 
 | |
|     if(params.verbosity >= NonlinearOptimizerParams::ERROR) cout << "newError: " << optimizer.error() << endl;
 | |
|   } while(optimizer.iterations() < params.maxIterations &&
 | |
|       !checkConvergence(params.relativeErrorTol, params.absoluteErrorTol,
 | |
|             params.errorTol, currentError, optimizer.error(), params.verbosity));
 | |
| 
 | |
|   Values result = optimizer.values();
 | |
| 
 | |
|   cout << "Final result sample:" << endl;
 | |
|   Values pose_values = utilities::allPose3s(result);
 | |
|   pose_values.print("Final camera poses:\n");
 | |
| 
 | |
|   result.at<Cal3_S2>(K(0)).print("Final K\n");
 | |
| 
 | |
|   noisy_K.print("Initial noisy K\n");
 | |
|   true_K.print("Initial correct K\n");
 | |
| 
 | |
|   return 0;
 | |
| }
 |