883 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			883 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * @file testSQP.cpp
 | |
|  * @brief demos of SQP using existing gtsam components
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <iostream>
 | |
| #include <cmath>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/map.hpp> // for insert
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| // TODO: DANGEROUS, create shared pointers
 | |
| #define GTSAM_MAGIC_GAUSSIAN 2
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include <GaussianFactorGraph.h>
 | |
| #include <NonlinearOptimizer.h>
 | |
| #include <SQPOptimizer.h>
 | |
| #include <simulated2D.h>
 | |
| #include <Ordering.h>
 | |
| #include <visualSLAM.h>
 | |
| 
 | |
| // templated implementations
 | |
| #include <NonlinearFactorGraph-inl.h>
 | |
| #include <NonlinearConstraint-inl.h>
 | |
| #include <NonlinearOptimizer-inl.h>
 | |
| #include <SQPOptimizer-inl.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost;
 | |
| using namespace boost::assign;
 | |
| 
 | |
| // trick from some reading group
 | |
| #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * This example uses a nonlinear objective function and
 | |
|  * nonlinear equality constraint.  The formulation is actually
 | |
|  * the Cholesky form that creates the full Hessian explicitly,
 | |
|  * which should really be avoided with our QR-based machinery.
 | |
|  *
 | |
|  * Note: the update equation used here has a fixed step size
 | |
|  * and gain that is rather arbitrarily chosen, and as such,
 | |
|  * will take a silly number of iterations.
 | |
|  */
 | |
| TEST (SQP, problem1_cholesky ) {
 | |
| 	bool verbose = false;
 | |
| 	// use a nonlinear function of f(x) = x^2+y^2
 | |
| 	// nonlinear equality constraint: g(x) = x^2-5-y=0
 | |
| 	// Lagrangian: f(x) + \lambda*g(x)
 | |
| 
 | |
| 	// state structure: [x y \lambda]
 | |
| 	VectorConfig init, state;
 | |
| 	init.insert("x", Vector_(1, 1.0));
 | |
| 	init.insert("y", Vector_(1, 1.0));
 | |
| 	init.insert("L", Vector_(1, 1.0));
 | |
| 	state = init;
 | |
| 
 | |
| 	if (verbose) init.print("Initial State");
 | |
| 
 | |
| 	// loop until convergence
 | |
| 	int maxIt = 10;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
| 		if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
 | |
| 
 | |
| 		// extract the states
 | |
| 		double x, y, lambda;
 | |
| 		x = state["x"](0);
 | |
| 		y = state["y"](0);
 | |
| 		lambda = state["L"](0);
 | |
| 
 | |
| 		// calculate the components
 | |
| 		Matrix H1, H2, gradG;
 | |
| 		Vector gradL, gx;
 | |
| 
 | |
| 		// hessian of lagrangian function, in two columns:
 | |
| 		H1 = Matrix_(2,1,
 | |
| 				2.0+2.0*lambda,
 | |
| 				0.0);
 | |
| 		H2 = Matrix_(2,1,
 | |
| 				0.0,
 | |
| 				2.0);
 | |
| 
 | |
| 		// deriviative of lagrangian function
 | |
| 		gradL = Vector_(2,
 | |
| 				2.0*x*(1+lambda),
 | |
| 				2.0*y-lambda);
 | |
| 
 | |
| 		// constraint derivatives
 | |
| 		gradG = Matrix_(2,1,
 | |
| 				2.0*x,
 | |
| 				0.0);
 | |
| 
 | |
| 		// constraint value
 | |
| 		gx = Vector_(1,
 | |
| 				x*x-5-y);
 | |
| 
 | |
| 		// create a factor for the states
 | |
| 		GaussianFactor::shared_ptr f1(new
 | |
| 				GaussianFactor("x", H1, "y", H2, "L", gradG, gradL, 1.0));
 | |
| 
 | |
| 		// create a factor for the lagrange multiplier
 | |
| 		GaussianFactor::shared_ptr f2(new
 | |
| 				GaussianFactor("x", -sub(gradG, 0, 1, 0, 1),
 | |
| 							   "y", -sub(gradG, 1, 2, 0, 1), -gx, 0.0));
 | |
| 
 | |
| 		// construct graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		fg.push_back(f1);
 | |
| 		fg.push_back(f2);
 | |
| 		if (verbose) fg.print("Graph");
 | |
| 
 | |
| 		// solve
 | |
| 		Ordering ord;
 | |
| 		ord += "x", "y", "L";
 | |
| 		VectorConfig delta = fg.optimize(ord).scale(-1.0);
 | |
| 		if (verbose) delta.print("Delta");
 | |
| 
 | |
| 		// update initial estimate
 | |
| 		VectorConfig newState = expmap(state, delta);
 | |
| 		state = newState;
 | |
| 
 | |
| 		if (verbose) state.print("Updated State");
 | |
| 	}
 | |
| 
 | |
| 	// verify that it converges to the nearest optimal point
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert("L", Vector_(1, -1.0));
 | |
| 	expected.insert("x", Vector_(1, 2.12));
 | |
| 	expected.insert("y", Vector_(1, -0.5));
 | |
| 	CHECK(assert_equal(expected,state, 1e-2));
 | |
| }
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * This example uses a nonlinear objective function and
 | |
|  * nonlinear equality constraint.  This formulation splits
 | |
|  * the constraint into a factor and a linear constraint.
 | |
|  *
 | |
|  * This example uses the same silly number of iterations as the
 | |
|  * previous example.
 | |
|  */
 | |
| TEST (SQP, problem1_sqp ) {
 | |
| 	bool verbose = false;
 | |
| 	// use a nonlinear function of f(x) = x^2+y^2
 | |
| 	// nonlinear equality constraint: g(x) = x^2-5-y=0
 | |
| 	// Lagrangian: f(x) + \lambda*g(x)
 | |
| 
 | |
| 	// state structure: [x y \lambda]
 | |
| 	VectorConfig init, state;
 | |
| 	init.insert("x", Vector_(1, 1.0));
 | |
| 	init.insert("y", Vector_(1, 1.0));
 | |
| 	init.insert("L", Vector_(1, 1.0));
 | |
| 	state = init;
 | |
| 
 | |
| 	if (verbose) init.print("Initial State");
 | |
| 
 | |
| 	// loop until convergence
 | |
| 	int maxIt = 5;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
| 		if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
 | |
| 
 | |
| 		// extract the states
 | |
| 		double x, y, lambda;
 | |
| 		x = state["x"](0);
 | |
| 		y = state["y"](0);
 | |
| 		lambda = state["L"](0);
 | |
| 
 | |
| 		/** create the linear factor
 | |
| 		 * ||h(x)-z||^2 => ||Ax-b||^2
 | |
| 		 *  where:
 | |
| 		 *		h(x) simply returns the inputs
 | |
| 		 *		z    zeros(2)
 | |
| 		 *		A 	 identity
 | |
| 		 *		b	 linearization point
 | |
| 		 */
 | |
| 		Matrix A = eye(2);
 | |
| 		Vector b = Vector_(2, x, y);
 | |
| 		GaussianFactor::shared_ptr f1(
 | |
| 						new GaussianFactor("x", sub(A, 0,2, 0,1), // A(:,1)
 | |
| 										   "y", sub(A, 0,2, 1,2), // A(:,2)
 | |
| 										   b,                     // rhs of f(x)
 | |
| 										   1.0));                 // arbitrary sigma
 | |
| 
 | |
| 		/** create the constraint-linear factor
 | |
| 		 * Provides a mechanism to use variable gain to force the constraint
 | |
| 		 * \lambda*gradG*dx + d\lambda = zero
 | |
| 		 * formulated in matrix form as:
 | |
| 		 * [\lambda*gradG eye(1)] [dx; d\lambda] = zero
 | |
| 		 */
 | |
| 		Matrix gradG = Matrix_(1, 2,2*x, -1.0);
 | |
| 		GaussianFactor::shared_ptr f2(
 | |
| 				new GaussianFactor("x", lambda*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
 | |
| 								   "y", lambda*sub(gradG, 0,1, 1,2),         // scaled gradG(:,2)
 | |
| 								   "L", eye(1),                         // dlambda term
 | |
| 								   Vector_(1, 0.0),                          // rhs is zero
 | |
| 								   1.0));                                    // arbitrary sigma
 | |
| 
 | |
| 		// create the actual constraint
 | |
| 		// [gradG] [x; y] - g = 0
 | |
| 		Vector g = Vector_(1,x*x-y-5);
 | |
| 		GaussianFactor::shared_ptr c1(
 | |
| 				new GaussianFactor("x", sub(gradG, 0,1, 0,1),   // slice first part of gradG
 | |
| 								   "y", sub(gradG, 0,1, 1,2),   // slice second part of gradG
 | |
| 								   g,                           // value of constraint function
 | |
| 								   0.0));                       // force to constraint
 | |
| 
 | |
| 		// construct graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		fg.push_back(f1);
 | |
| 		fg.push_back(f2);
 | |
| 		fg.push_back(c1);
 | |
| 		if (verbose) fg.print("Graph");
 | |
| 
 | |
| 		// solve
 | |
| 		Ordering ord;
 | |
| 		ord += "x", "y", "L";
 | |
| 		VectorConfig delta = fg.optimize(ord);
 | |
| 		if (verbose) delta.print("Delta");
 | |
| 
 | |
| 		// update initial estimate
 | |
| 		VectorConfig newState = expmap(state, delta.scale(-1.0));
 | |
| 
 | |
| 		// set the state to the updated state
 | |
| 		state = newState;
 | |
| 
 | |
| 		if (verbose) state.print("Updated State");
 | |
| 	}
 | |
| 
 | |
| 	// verify that it converges to the nearest optimal point
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert("x", Vector_(1, 2.12));
 | |
| 	expected.insert("y", Vector_(1, -0.5));
 | |
| 	CHECK(assert_equal(state["x"], expected["x"], 1e-2));
 | |
| 	CHECK(assert_equal(state["y"], expected["y"], 1e-2));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| // components for nonlinear factor graphs
 | |
| bool vector_compare(const Vector& a, const Vector& b) {
 | |
| 	return equal_with_abs_tol(a, b, 1e-5);
 | |
| }
 | |
| 
 | |
| typedef NonlinearFactorGraph<VectorConfig> NLGraph;
 | |
| typedef boost::shared_ptr<NonlinearFactor<VectorConfig> > shared;
 | |
| typedef boost::shared_ptr<NonlinearConstraint<VectorConfig> > shared_c;
 | |
| 
 | |
| typedef NonlinearEquality<VectorConfig,Symbol,Vector> NLE;
 | |
| typedef boost::shared_ptr<NLE> shared_eq;
 | |
| typedef boost::shared_ptr<VectorConfig> shared_cfg;
 | |
| typedef NonlinearOptimizer<NLGraph,VectorConfig> Optimizer;
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * Determining a ground truth linear system
 | |
|  * with two poses seeing one landmark, with each pose
 | |
|  * constrained to a particular value
 | |
|  */
 | |
| TEST (SQP, two_pose_truth ) {
 | |
| 	bool verbose = false;
 | |
| 	// position (1, 1) constraint for x1
 | |
| 	// position (5, 6) constraint for x2
 | |
| 	VectorConfig feas;
 | |
| 	Vector feas1 = Vector_(2, 1.0, 1.0);
 | |
| 	Vector feas2 = Vector_(2, 5.0, 6.0);
 | |
| 	feas.insert("x1", feas1);
 | |
| 	feas.insert("x2", feas2);
 | |
| 
 | |
| 	// constant constraint on x1
 | |
| 	shared_eq ef1(new NLE("x1", feas1, vector_compare));
 | |
| 
 | |
| 	// constant constraint on x2
 | |
| 	shared_eq ef2(new NLE("x2", feas2, vector_compare));
 | |
| 
 | |
| 	// measurement from x1 to l1
 | |
| 	Vector z1 = Vector_(2, 0.0, 5.0);
 | |
| 	double sigma1 = 0.1;
 | |
| 	shared f1(new simulated2D::Measurement(z1, sigma1, "x1", "l1"));
 | |
| 
 | |
| 	// measurement from x2 to l1
 | |
| 	Vector z2 = Vector_(2, -4.0, 0.0);
 | |
| 	double sigma2 = 0.1;
 | |
| 	shared f2(new simulated2D::Measurement(z2, sigma2, "x2", "l1"));
 | |
| 
 | |
| 	// construct the graph
 | |
| 	shared_ptr<NLGraph> graph(new NLGraph());
 | |
| 	graph->push_back(ef1);
 | |
| 	graph->push_back(ef2);
 | |
| 	graph->push_back(f1);
 | |
| 	graph->push_back(f2);
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	boost::shared_ptr<VectorConfig> initialEstimate(new VectorConfig(feas)); // must start with feasible set
 | |
| 	initialEstimate->insert("l1", Vector_(2, 1.0, 6.0)); // ground truth
 | |
| 	//initialEstimate->insert("l1", Vector_(2, 1.2, 5.6)); // with small error
 | |
| 
 | |
| 	// optimize the graph
 | |
| 	shared_ptr<Ordering> ordering(new Ordering());
 | |
| 	*ordering += "x1", "x2", "l1";
 | |
| 	Optimizer optimizer(graph, ordering, initialEstimate);
 | |
| 
 | |
| 	// display solution
 | |
| 	double relativeThreshold = 1e-5;
 | |
| 	double absoluteThreshold = 1e-5;
 | |
| 	Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold);
 | |
| 	boost::shared_ptr<const VectorConfig> actual = act_opt.config();
 | |
| 	if (verbose) actual->print("Configuration after optimization");
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected(feas);
 | |
| 	expected.insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	CHECK(assert_equal(expected, *actual, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| namespace sqp_test1 {
 | |
| 
 | |
| 	// binary constraint between landmarks
 | |
| 	/** g(x) = x-y = 0 */
 | |
| 	Vector g(const VectorConfig& config, const list<Symbol>& keys) {
 | |
| 		return config[keys.front()] - config[keys.back()];
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l1 */
 | |
| 	Matrix G1(const VectorConfig& config, const list<Symbol>& keys) {
 | |
| 		return eye(2);
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l2 */
 | |
| 	Matrix G2(const VectorConfig& config, const list<Symbol>& keys) {
 | |
| 		return -1 * eye(2);
 | |
| 	}
 | |
| 
 | |
| } // \namespace sqp_test1
 | |
| 
 | |
| namespace sqp_test2 {
 | |
| 
 | |
| 	// Unary Constraint on x1
 | |
| 	/** g(x) = x -[1;1] = 0 */
 | |
| 	Vector g(const VectorConfig& config, const list<Symbol>& keys) {
 | |
| 		return config[keys.front()] - Vector_(2, 1.0, 1.0);
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at x1 */
 | |
| 	Matrix G(const VectorConfig& config, const list<Symbol>& keys) {
 | |
| 		return eye(2);
 | |
| 	}
 | |
| 
 | |
| } // \namespace sqp_test2
 | |
| 
 | |
| /* *********************************************************************
 | |
|  *  Version that actually uses nonlinear equality constraints
 | |
|  *  to to perform optimization.  Same as above, but no
 | |
|  *  equality constraint on x2, and two landmarks that
 | |
|  *  should be the same. Note that this is a linear system,
 | |
|  *  so it will converge in one step.
 | |
|  */
 | |
| TEST (SQP, two_pose ) {
 | |
| 	bool verbose = false;
 | |
| 	// position (1, 1) constraint for x1
 | |
| 	VectorConfig feas;
 | |
| 	feas.insert("x1", Vector_(2, 1.0, 1.0));
 | |
| 
 | |
| 	// constant constraint on x1
 | |
| 	list<Symbol> keys1; keys1 += "x1";
 | |
| 	boost::shared_ptr<NonlinearConstraint1<VectorConfig> > c1(
 | |
| 			new NonlinearConstraint1<VectorConfig>(
 | |
| 					boost::bind(sqp_test2::g, _1, keys1),
 | |
| 					"x1", boost::bind(sqp_test2::G, _1, keys1),
 | |
| 					 2, "L1"));
 | |
| 
 | |
| 	// measurement from x1 to l1
 | |
| 	Vector z1 = Vector_(2, 0.0, 5.0);
 | |
| 	double sigma1 = 0.1;
 | |
| 	shared f1(new simulated2D::Measurement(z1, sigma1, "x1", "l1"));
 | |
| 
 | |
| 	// measurement from x2 to l2
 | |
| 	Vector z2 = Vector_(2, -4.0, 0.0);
 | |
| 	double sigma2 = 0.1;
 | |
| 	shared f2(new simulated2D::Measurement(z2, sigma2, "x2", "l2"));
 | |
| 
 | |
| 	// equality constraint between l1 and l2
 | |
| 	list<Symbol> keys2; keys2 += "l1", "l2";
 | |
| 	boost::shared_ptr<NonlinearConstraint2<VectorConfig> > c2(
 | |
| 			new NonlinearConstraint2<VectorConfig>(
 | |
| 					boost::bind(sqp_test1::g, _1, keys2),
 | |
| 					"l1", boost::bind(sqp_test1::G1, _1, keys2),
 | |
| 					"l2", boost::bind(sqp_test1::G2, _1, keys2),
 | |
| 					 2, "L12"));
 | |
| 
 | |
| 	// construct the graph
 | |
| 	NLGraph graph;
 | |
| 	graph.push_back(c1);
 | |
| 	graph.push_back(c2);
 | |
| 	graph.push_back(f1);
 | |
| 	graph.push_back(f2);
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	shared_cfg initialEstimate(new VectorConfig(feas)); // must start with feasible set
 | |
| 	initialEstimate->insert("l1", Vector_(2, 1.0, 6.0)); // ground truth
 | |
| 	initialEstimate->insert("l2", Vector_(2, -4.0, 0.0)); // starting with a separate reference frame
 | |
| 	initialEstimate->insert("x2", Vector_(2, 0.0, 0.0)); // other pose starts at origin
 | |
| 
 | |
| 	// create an initial estimate for the lagrange multiplier
 | |
| 	shared_cfg initLagrange(new VectorConfig);
 | |
| 	initLagrange->insert("L12", Vector_(2, 1.0, 1.0));
 | |
| 	initLagrange->insert("L1", Vector_(2, 1.0, 1.0));
 | |
| 
 | |
| 	// create state config variables and initialize them
 | |
| 	VectorConfig state(*initialEstimate), state_lambda(*initLagrange);
 | |
| 
 | |
| 	// optimization loop
 | |
| 	int maxIt = 1;
 | |
| 	for (int i = 0; i<maxIt; ++i) {
 | |
|  		// linearize the graph
 | |
| 		GaussianFactorGraph fg;
 | |
| 		typedef FactorGraph<NonlinearFactor<VectorConfig> >::const_iterator const_iterator;
 | |
| 		typedef NonlinearConstraint<VectorConfig> NLConstraint;
 | |
| 		// iterate over all factors
 | |
| 		for (const_iterator factor = graph.begin(); factor < graph.end(); factor++) {
 | |
| 			const shared_c constraint = boost::shared_dynamic_cast<NLConstraint >(*factor);
 | |
| 			if (constraint == NULL) {
 | |
| 				// if a regular factor, linearize using the default linearization
 | |
| 				GaussianFactor::shared_ptr f = (*factor)->linearize(state);
 | |
| 				fg.push_back(f);
 | |
| 			} else {
 | |
| 				// if a constraint, linearize using the constraint method (2 configs)
 | |
| 				GaussianFactor::shared_ptr f, c;
 | |
| 				boost::tie(f,c) = constraint->linearize(state, state_lambda);
 | |
| 				fg.push_back(f);
 | |
| 				fg.push_back(c);
 | |
| 			}
 | |
| 		}
 | |
| 		if (verbose) fg.print("Linearized graph");
 | |
| 
 | |
| 		// create an ordering
 | |
| 		Ordering ordering;
 | |
| 		ordering += "x1", "x2", "l1", "l2", "L12", "L1";
 | |
| 
 | |
| 		// optimize linear graph to get full delta config
 | |
| 		VectorConfig delta = fg.optimize(ordering);
 | |
| 		if (verbose) delta.print("Delta Config");
 | |
| 
 | |
| 		// update both state variables
 | |
| 		state = expmap(state, delta);
 | |
| 		if (verbose) state.print("newState");
 | |
| 		state_lambda = expmap(state_lambda, delta);
 | |
| 		if (verbose) state_lambda.print("newStateLam");
 | |
| 	}
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected(feas);
 | |
| 	expected.insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("l2", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("x2", Vector_(2, 5.0, 6.0));
 | |
| 	CHECK(assert_equal(expected, state, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| // VSLAM Examples
 | |
| /* ********************************************************************* */
 | |
| // make a realistic calibration matrix
 | |
| double fov = 60; // degrees
 | |
| size_t w=640,h=480;
 | |
| Cal3_S2 K(fov,w,h);
 | |
| boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
 | |
| 
 | |
| using namespace gtsam::visualSLAM;
 | |
| using namespace boost;
 | |
| 
 | |
| // typedefs for visual SLAM example
 | |
| typedef boost::shared_ptr<ProjectionFactor> shared_vf;
 | |
| typedef NonlinearOptimizer<Graph,Config> VOptimizer;
 | |
| typedef SQPOptimizer<Graph, Config> SOptimizer;
 | |
| 
 | |
| /**
 | |
|  * Ground truth for a visual SLAM example with stereo vision
 | |
|  */
 | |
| TEST (SQP, stereo_truth ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 				1.0, 0.0, 0.0,
 | |
| 				0.0, 0.0, 1.0,
 | |
| 				0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmarkNoisy(1.0, 6.0, 0.0);
 | |
| 
 | |
| 	// create truth config
 | |
| 	boost::shared_ptr<Config> truthConfig(new Config);
 | |
| 	truthConfig->insert(1, camera1.pose());
 | |
| 	truthConfig->insert(2, camera2.pose());
 | |
| 	truthConfig->insert(1, landmark);
 | |
| 
 | |
| 	// create graph
 | |
| 	shared_ptr<Graph> graph(new Graph());
 | |
| 
 | |
| 	// create equality constraints for poses
 | |
| 	graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
 | |
| 	graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
 | |
| 
 | |
| 	// create VSLAM factors
 | |
| 	Point2 z1 = camera1.project(landmark);
 | |
| 	if (verbose) z1.print("z1");
 | |
| 	shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
 | |
| 	graph->push_back(vf1);
 | |
| 	Point2 z2 = camera2.project(landmark);
 | |
| 	if (verbose) z2.print("z2");
 | |
| 	shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 1, shK));
 | |
| 	graph->push_back(vf2);
 | |
| 
 | |
| 	if (verbose) graph->print("Graph after construction");
 | |
| 
 | |
| 	// create ordering
 | |
| 	shared_ptr<Ordering> ord(new Ordering());
 | |
| 	*ord += "x1", "x2", "l1";
 | |
| 
 | |
| 	// create optimizer
 | |
| 	VOptimizer optimizer(graph, ord, truthConfig);
 | |
| 
 | |
| 	// optimize
 | |
| 	VOptimizer afterOneIteration = optimizer.iterate();
 | |
| 
 | |
| 	// verify
 | |
| 	DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
 | |
| 
 | |
| 	// check if correct
 | |
| 	if (verbose) afterOneIteration.config()->print("After iteration");
 | |
| 	CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * Ground truth for a visual SLAM example with stereo vision
 | |
|  * with some noise injected into the initial config
 | |
|  */
 | |
| TEST (SQP, stereo_truth_noisy ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// setting to determine how far away the noisy landmark is,
 | |
| 	// given that the ground truth is 5m in front of the cameras
 | |
| 	double noisyDist = 7.6;
 | |
| 
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 				1.0, 0.0, 0.0,
 | |
| 				0.0, 0.0, 1.0,
 | |
| 				0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmarkNoisy(1.0, noisyDist, 0.0); // initial point is too far out
 | |
| 
 | |
| 	// create truth config
 | |
| 	boost::shared_ptr<Config> truthConfig(new Config);
 | |
| 	truthConfig->insert(1, camera1.pose());
 | |
| 	truthConfig->insert(2, camera2.pose());
 | |
| 	truthConfig->insert(1, landmark);
 | |
| 
 | |
| 	// create config
 | |
| 	boost::shared_ptr<Config> noisyConfig(new Config);
 | |
| 	noisyConfig->insert(1, camera1.pose());
 | |
| 	noisyConfig->insert(2, camera2.pose());
 | |
| 	noisyConfig->insert(1, landmarkNoisy);
 | |
| 
 | |
| 	// create graph
 | |
| 	shared_ptr<Graph> graph(new Graph());
 | |
| 
 | |
| 	// create equality constraints for poses
 | |
|   graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
 | |
|   graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
 | |
| 
 | |
| 	// create VSLAM factors
 | |
| 	Point2 z1 = camera1.project(landmark);
 | |
| 	if (verbose) z1.print("z1");
 | |
| 	shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
 | |
| 	graph->push_back(vf1);
 | |
| 	Point2 z2 = camera2.project(landmark);
 | |
| 	if (verbose) z2.print("z2");
 | |
| 	shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 1, shK));
 | |
| 	graph->push_back(vf2);
 | |
| 
 | |
| 	if (verbose)  {
 | |
| 		graph->print("Graph after construction");
 | |
| 		noisyConfig->print("Initial config");
 | |
| 	}
 | |
| 
 | |
| 	// create ordering
 | |
| 	shared_ptr<Ordering> ord(new Ordering());
 | |
| 	*ord += "x1", "x2", "l1";
 | |
| 
 | |
| 	// create optimizer
 | |
| 	VOptimizer optimizer0(graph, ord, noisyConfig);
 | |
| 
 | |
| 	if (verbose)
 | |
| 		cout << "Initial Error: " << optimizer0.error() << endl;
 | |
| 
 | |
| 	// use Levenberg-Marquardt optimization
 | |
| 	double relThresh = 1e-5, absThresh = 1e-5;
 | |
| 	VOptimizer optimizer(optimizer0.levenbergMarquardt(relThresh, absThresh, VOptimizer::SILENT));
 | |
| 
 | |
| 	// verify
 | |
| 	DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
 | |
| 
 | |
| 	// check if correct
 | |
| 	if (verbose) {
 | |
| 		optimizer.config()->print("After iteration");
 | |
| 		cout << "Final error: " << optimizer.error() << endl;
 | |
| 	}
 | |
| 	CHECK(assert_equal(*truthConfig,*(optimizer.config())));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| // Utility function to strip out a landmark number from a string key
 | |
| //int getNum(const string& key) {
 | |
| //	return atoi(key.substr(1, key.size()-1).c_str());
 | |
| //}
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| namespace sqp_stereo {
 | |
| 
 | |
| 	// binary constraint between landmarks
 | |
| 	/** g(x) = x-y = 0 */
 | |
| 	Vector g(const Config& config, const list<Symbol>& keys) {
 | |
| 		return config[PointKey(keys.front().index())].vector()
 | |
| 				- config[PointKey(keys.back().index())].vector();
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l1 */
 | |
| 	Matrix G1(const Config& config, const list<Symbol>& keys) {
 | |
| 		return eye(3);
 | |
| 	}
 | |
| 
 | |
| 	/** jacobian at l2 */
 | |
| 	Matrix G2(const Config& config, const list<Symbol>& keys) {
 | |
| 		return -1.0 * eye(3);
 | |
| 	}
 | |
| 
 | |
| } // \namespace sqp_stereo
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| Graph stereoExampleGraph() {
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 				1.0, 0.0, 0.0,
 | |
| 				0.0, 0.0, 1.0,
 | |
| 				0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmark2(1.0, 5.0, 0.0);
 | |
| 
 | |
| 	// create graph
 | |
| 	Graph graph;
 | |
| 
 | |
| 	// create equality constraints for poses
 | |
|   graph.push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
 | |
|   graph.push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
 | |
| 
 | |
| 	// create  factors
 | |
| 	Point2 z1 = camera1.project(landmark1);
 | |
| 	shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
 | |
| 	graph.push_back(vf1);
 | |
| 	Point2 z2 = camera2.project(landmark2);
 | |
| 	shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 2, shK));
 | |
| 	graph.push_back(vf2);
 | |
| 
 | |
| 	// create the binary equality constraint between the landmarks
 | |
| 	// NOTE: this is really just a linear constraint that is exactly the same
 | |
| 	// as the previous examples
 | |
| 	list<Symbol> keys; keys += "l1", "l2";
 | |
| 	boost::shared_ptr<NonlinearConstraint2<Config> > c2(
 | |
| 				new NonlinearConstraint2<Config>(
 | |
| 						boost::bind(sqp_stereo::g, _1, keys),
 | |
| 						"l1", boost::bind(sqp_stereo::G1, _1, keys),
 | |
| 						"l2", boost::bind(sqp_stereo::G2, _1, keys),
 | |
| 						 3, "L12"));
 | |
| 	graph.push_back(c2);
 | |
| 
 | |
| 	return graph;
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| boost::shared_ptr<Config> stereoExampleTruthConfig() {
 | |
| 	// create initial estimates
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 				1.0, 0.0, 0.0,
 | |
| 				0.0, 0.0, 1.0,
 | |
| 				0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	SimpleCamera camera1(K, pose1);
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	SimpleCamera camera2(K, pose2);
 | |
| 	Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmark2(1.0, 5.0, 0.0);
 | |
| 
 | |
| 	// create config
 | |
| 	boost::shared_ptr<Config> truthConfig(new Config);
 | |
| 	truthConfig->insert(1, camera1.pose());
 | |
| 	truthConfig->insert(2, camera2.pose());
 | |
| 	truthConfig->insert(1, landmark1);
 | |
| 	truthConfig->insert(2, landmark2); // create two landmarks in same place
 | |
| 
 | |
| 	return truthConfig;
 | |
| }
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * SQP version of the above stereo example,
 | |
|  * with the initial case as the ground truth
 | |
|  */
 | |
| TEST (SQP, stereo_sqp ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// get a graph
 | |
| 	Graph graph = stereoExampleGraph();
 | |
| 	if (verbose) graph.print("Graph after construction");
 | |
| 
 | |
| 	// get the truth config
 | |
| 	boost::shared_ptr<Config> truthConfig = stereoExampleTruthConfig();
 | |
| 
 | |
| 	// create ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1", "x2", "l1", "l2";
 | |
| 
 | |
| 	// create optimizer
 | |
| 	SOptimizer optimizer(graph, ord, truthConfig);
 | |
| 
 | |
| 	// optimize
 | |
| 	SOptimizer afterOneIteration = optimizer.iterate();
 | |
| 
 | |
| 	// check if correct
 | |
| 	CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
 | |
| }
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * SQP version of the above stereo example,
 | |
|  * with noise in the initial estimate
 | |
|  */
 | |
| TEST (SQP, stereo_sqp_noisy ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// get a graph
 | |
| 	Graph graph = stereoExampleGraph();
 | |
| 
 | |
| 	// create initial data
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 			1.0, 0.0, 0.0,
 | |
| 			0.0, 0.0, 1.0,
 | |
| 			0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmark2(1.5, 5.0, 0.0);
 | |
| 
 | |
| 	// noisy config
 | |
| 	boost::shared_ptr<Config> initConfig(new Config);
 | |
| 	initConfig->insert(1, pose1);
 | |
| 	initConfig->insert(2, pose2);
 | |
| 	initConfig->insert(1, landmark1);
 | |
| 	initConfig->insert(2, landmark2); // create two landmarks in same place
 | |
| 
 | |
| 	// create ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1", "x2", "l1", "l2";
 | |
| 
 | |
| 	// create optimizer
 | |
| 	SOptimizer optimizer(graph, ord, initConfig);
 | |
| 
 | |
| 	// optimize
 | |
| 	double start_error = optimizer.error();
 | |
| 	int maxIt = 2;
 | |
| 	for (int i=0; i<maxIt; ++i) {
 | |
| 		if (verbose) cout << "\n ************************** \n"
 | |
| 						  << " Iteration: " << i << endl;
 | |
| 		//if (verbose) optimizer.graph()->print();
 | |
| 		if (verbose) optimizer.config()->print();
 | |
| 		if (verbose)
 | |
| 			optimizer = optimizer.iterate(SOptimizer::FULL);
 | |
| 		else
 | |
| 			optimizer = optimizer.iterate(SOptimizer::SILENT);
 | |
| 	}
 | |
| 
 | |
| 	if (verbose) cout << "Initial Error: " << start_error << "\n"
 | |
| 					  << "Final Error:   " << optimizer.error() << endl;
 | |
| 
 | |
| 	// get the truth config
 | |
| 	boost::shared_ptr<Config> truthConfig = stereoExampleTruthConfig();
 | |
| 
 | |
| 	if (verbose) {
 | |
| 		initConfig->print("Initial Config");
 | |
| 		truthConfig->print("Truth Config");
 | |
| 		optimizer.config()->print("After optimization");
 | |
| 	}
 | |
| 
 | |
| 	// check if correct
 | |
| 	CHECK(assert_equal(*truthConfig,*(optimizer.config())));
 | |
| }
 | |
| 
 | |
| /* *********************************************************************
 | |
|  * SQP version of the above stereo example,
 | |
|  * with noise in the initial estimate and manually specified
 | |
|  * lagrange multipliers
 | |
|  */
 | |
| TEST (SQP, stereo_sqp_noisy_manualLagrange ) {
 | |
| 	bool verbose = false;
 | |
| 
 | |
| 	// get a graph
 | |
| 	Graph graph = stereoExampleGraph();
 | |
| 
 | |
| 	// create initial data
 | |
| 	Rot3 faceDownY(Matrix_(3,3,
 | |
| 			1.0, 0.0, 0.0,
 | |
| 			0.0, 0.0, 1.0,
 | |
| 			0.0, 1.0, 0.0));
 | |
| 	Pose3 pose1(faceDownY, Point3()); // origin, left camera
 | |
| 	Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
 | |
| 	Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
 | |
| 	Point3 landmark2(1.5, 5.0, 0.0);
 | |
| 
 | |
| 	// noisy config
 | |
| 	boost::shared_ptr<Config> initConfig(new Config);
 | |
| 	initConfig->insert(1, pose1);
 | |
| 	initConfig->insert(2, pose2);
 | |
| 	initConfig->insert(1, landmark1);
 | |
| 	initConfig->insert(2, landmark2); // create two landmarks in same place
 | |
| 
 | |
| 	// create ordering with lagrange multiplier included
 | |
| 	Ordering ord;
 | |
| 	ord += "x1", "x2", "l1", "l2", "L12";
 | |
| 
 | |
| 	// create lagrange multipliers
 | |
| 	SOptimizer::shared_vconfig initLagrangeConfig(new VectorConfig);
 | |
| 	initLagrangeConfig->insert("L12", Vector_(3, 0.0, 0.0, 0.0));
 | |
| 
 | |
| 	// create optimizer
 | |
| 	SOptimizer optimizer(graph, ord, initConfig, initLagrangeConfig);
 | |
| 
 | |
| 	// optimize
 | |
| 	double start_error = optimizer.error();
 | |
| 	int maxIt = 5;
 | |
| 	for (int i=0; i<maxIt; ++i) {
 | |
| 		if (verbose) {
 | |
| 			cout << "\n ************************** \n"
 | |
| 				 << " Iteration: " << i << endl;
 | |
| 			optimizer.config()->print("Config Before Iteration");
 | |
| 			optimizer.configLagrange()->print("Lagrange Before Iteration");
 | |
| 			optimizer = optimizer.iterate(SOptimizer::FULL);
 | |
| 		}
 | |
| 		else
 | |
| 			optimizer = optimizer.iterate(SOptimizer::SILENT);
 | |
| 	}
 | |
| 
 | |
| 	if (verbose) cout << "Initial Error: " << start_error << "\n"
 | |
| 					  << "Final Error:   " << optimizer.error() << endl;
 | |
| 
 | |
| 	// get the truth config
 | |
| 	boost::shared_ptr<Config> truthConfig = stereoExampleTruthConfig();
 | |
| 
 | |
| 	if (verbose) {
 | |
| 		initConfig->print("Initial Config");
 | |
| 		truthConfig->print("Truth Config");
 | |
| 		optimizer.config()->print("After optimization");
 | |
| 	}
 | |
| 
 | |
| 	// check if correct
 | |
| 	CHECK(assert_equal(*truthConfig,*(optimizer.config())));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |