340 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    testBTransformBtwRobotsUnaryFactorEM.cpp
 | |
|  * @brief   Unit test for the TransformBtwRobotsUnaryFactorEM
 | |
|  * @author  Vadim Indelman
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| 
 | |
| #include <gtsam_unstable/slam/TransformBtwRobotsUnaryFactorEM.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/base/LieVector.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| 
 | |
| #include <gtsam/nonlinear/NonlinearOptimizer.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | |
| 
 | |
| //#include <gtsam/linear/GaussianSequentialSolver.h>
 | |
| 
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below
 | |
| // to reenable the test.
 | |
| //#if 0
 | |
| /* ************************************************************************* */
 | |
| LieVector predictionError(const Pose2& org1_T_org2, const gtsam::Key& key, const TransformBtwRobotsUnaryFactorEM<gtsam::Pose2>& factor){
 | |
|   gtsam::Values values;
 | |
|   values.insert(key, org1_T_org2);
 | |
|   //  LieVector err = factor.whitenedError(values);
 | |
|   //  return err;
 | |
|   return LieVector::Expmap(factor.whitenedError(values));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| //LieVector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& keyA, const gtsam::Key& keyB, const BetweenFactor<gtsam::Pose2>& factor){
 | |
| //  gtsam::Values values;
 | |
| //  values.insert(keyA, p1);
 | |
| //  values.insert(keyB, p2);
 | |
| //  //  LieVector err = factor.whitenedError(values);
 | |
| //  //  return err;
 | |
| //  return LieVector::Expmap(factor.whitenedError(values));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( TransformBtwRobotsUnaryFactorEM, ConstructorAndEquals)
 | |
| {
 | |
|   gtsam::Key key(0);
 | |
|   gtsam::Key keyA(1);
 | |
|   gtsam::Key keyB(2);
 | |
| 
 | |
|   gtsam::Pose2 p1(10.0, 15.0, 0.1);
 | |
|   gtsam::Pose2 p2(15.0, 15.0, 0.3);
 | |
|   gtsam::Pose2 noise(0.5, 0.4, 0.01);
 | |
|   gtsam::Pose2 rel_pose_ideal = p1.between(p2);
 | |
|   gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise);
 | |
| 
 | |
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas((Vec(3) << 0.5, 0.5, 0.05)));
 | |
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas((Vec(3) << 5, 5, 1.0)));
 | |
| 
 | |
|   double prior_outlier = 0.5;
 | |
|   double prior_inlier = 0.5;
 | |
| 
 | |
|   gtsam::Values valA, valB;
 | |
|   valA.insert(keyA, p1);
 | |
|   valB.insert(keyB, p2);
 | |
| 
 | |
|   // Constructor
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
 | |
|       model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> h(key, rel_pose_msr, keyA, keyB, valA, valB,
 | |
|       model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   // Equals
 | |
|   CHECK(assert_equal(g, h, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( TransformBtwRobotsUnaryFactorEM, unwhitenedError)
 | |
| {
 | |
|   gtsam::Key key(0);
 | |
|   gtsam::Key keyA(1);
 | |
|   gtsam::Key keyB(2);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_1(10.0, 15.0, 0.1);
 | |
|   gtsam::Pose2 orgB_T_2(15.0, 15.0, 0.3);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_orgB(100.0, 45.0, 1.8);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_2 = orgA_T_orgB.compose(orgB_T_2);
 | |
| 
 | |
|   gtsam::Pose2 rel_pose_ideal = orgA_T_1.between(orgA_T_2);
 | |
|   gtsam::Pose2 rel_pose_msr   = rel_pose_ideal;
 | |
| 
 | |
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas((Vec(3) << 0.5, 0.5, 0.05)));
 | |
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas((Vec(3) << 5, 5, 1.0)));
 | |
| 
 | |
|   double prior_outlier = 0.01;
 | |
|   double prior_inlier = 0.99;
 | |
| 
 | |
|   gtsam::Values valA, valB;
 | |
|   valA.insert(keyA, orgA_T_1);
 | |
|   valB.insert(keyB, orgB_T_2);
 | |
| 
 | |
|   // Constructor
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
 | |
|         model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   gtsam::Values values;
 | |
|   values.insert(key, orgA_T_orgB);
 | |
|   Vector err = g.unwhitenedError(values);
 | |
| 
 | |
|   // Equals
 | |
|   CHECK(assert_equal(err, zero(3), 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( TransformBtwRobotsUnaryFactorEM, unwhitenedError2)
 | |
| {
 | |
|   gtsam::Key key(0);
 | |
|   gtsam::Key keyA(1);
 | |
|   gtsam::Key keyB(2);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_currA(0.0, 0.0, 0.0);
 | |
|   gtsam::Pose2 orgB_T_currB(-10.0, 15.0, 0.1);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_orgB(0.0, 0.0, 0.0);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
 | |
| 
 | |
|   gtsam::Pose2 rel_pose_ideal = orgA_T_currA.between(orgA_T_currB);
 | |
|   gtsam::Pose2 rel_pose_msr   = rel_pose_ideal;
 | |
| 
 | |
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas((Vec(3) << 0.5, 0.5, 0.05)));
 | |
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas((Vec(3) << 5, 5, 1.0)));
 | |
| 
 | |
|   double prior_outlier = 0.01;
 | |
|   double prior_inlier = 0.99;
 | |
| 
 | |
|   gtsam::Values valA, valB;
 | |
|   valA.insert(keyA, orgA_T_currA);
 | |
|   valB.insert(keyB, orgB_T_currB);
 | |
| 
 | |
|   // Constructor
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
 | |
|         model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   gtsam::Values values;
 | |
|   values.insert(key, orgA_T_orgB);
 | |
|   Vector err = g.unwhitenedError(values);
 | |
| 
 | |
|   // Equals
 | |
|   CHECK(assert_equal(err, zero(3), 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( TransformBtwRobotsUnaryFactorEM, Optimize)
 | |
| {
 | |
|   gtsam::Key key(0);
 | |
|   gtsam::Key keyA(1);
 | |
|   gtsam::Key keyB(2);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_currA(0.0, 0.0, 0.0);
 | |
|   gtsam::Pose2 orgB_T_currB(1.0, 2.0, 0.05);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_orgB_tr(10.0, -15.0, 0.0);
 | |
|   gtsam::Pose2 orgA_T_currB_tr  = orgA_T_orgB_tr.compose(orgB_T_currB);
 | |
|   gtsam::Pose2 currA_T_currB_tr = orgA_T_currA.between(orgA_T_currB_tr);
 | |
| 
 | |
|   // some error in measurements
 | |
|   //  gtsam::Pose2 currA_Tmsr_currB1 = currA_T_currB_tr.compose(gtsam::Pose2(0.1, 0.02, 0.01));
 | |
|   //  gtsam::Pose2 currA_Tmsr_currB2 = currA_T_currB_tr.compose(gtsam::Pose2(-0.1, 0.02, 0.01));
 | |
|   //  gtsam::Pose2 currA_Tmsr_currB3 = currA_T_currB_tr.compose(gtsam::Pose2(0.1, -0.02, 0.01));
 | |
|   //  gtsam::Pose2 currA_Tmsr_currB4 = currA_T_currB_tr.compose(gtsam::Pose2(0.1, 0.02, -0.01));
 | |
| 
 | |
|   // ideal measurements
 | |
|   gtsam::Pose2 currA_Tmsr_currB1 = currA_T_currB_tr.compose(gtsam::Pose2(0.0, 0.0, 0.0));
 | |
|   gtsam::Pose2 currA_Tmsr_currB2 = currA_Tmsr_currB1;
 | |
|   gtsam::Pose2 currA_Tmsr_currB3 = currA_Tmsr_currB1;
 | |
|   gtsam::Pose2 currA_Tmsr_currB4 = currA_Tmsr_currB1;
 | |
| 
 | |
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas((Vec(3) << 0.5, 0.5, 0.05)));
 | |
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas((Vec(3) << 5, 5, 1.0)));
 | |
| 
 | |
|   double prior_outlier = 0.01;
 | |
|   double prior_inlier = 0.99;
 | |
| 
 | |
|   gtsam::Values valA, valB;
 | |
|   valA.insert(keyA, orgA_T_currA);
 | |
|   valB.insert(keyB, orgB_T_currB);
 | |
| 
 | |
|   // Constructor
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g1(key, currA_Tmsr_currB1, keyA, keyB, valA, valB,
 | |
|         model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g2(key, currA_Tmsr_currB2, keyA, keyB, valA, valB,
 | |
|           model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g3(key, currA_Tmsr_currB3, keyA, keyB, valA, valB,
 | |
|           model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g4(key, currA_Tmsr_currB4, keyA, keyB, valA, valB,
 | |
|           model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   gtsam::Values values;
 | |
|   values.insert(key, gtsam::Pose2());
 | |
| 
 | |
|   gtsam::NonlinearFactorGraph graph;
 | |
|   graph.push_back(g1);
 | |
|   graph.push_back(g2);
 | |
|   graph.push_back(g3);
 | |
|   graph.push_back(g4);
 | |
| 
 | |
|   gtsam::GaussNewtonParams params;
 | |
|   gtsam::GaussNewtonOptimizer optimizer(graph, values, params);
 | |
|   gtsam::Values result = optimizer.optimize();
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_orgB_opt = result.at<gtsam::Pose2>(key);
 | |
| 
 | |
|   CHECK(assert_equal(orgA_T_orgB_opt, orgA_T_orgB_tr, 1e-5));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( TransformBtwRobotsUnaryFactorEM, Jacobian)
 | |
| {
 | |
|   gtsam::Key key(0);
 | |
|   gtsam::Key keyA(1);
 | |
|   gtsam::Key keyB(2);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_1(10.0, 15.0, 0.1);
 | |
|   gtsam::Pose2 orgB_T_2(15.0, 15.0, 0.3);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_orgB(100.0, 45.0, 1.8);
 | |
| 
 | |
|   gtsam::Pose2 orgA_T_2 = orgA_T_orgB.compose(orgB_T_2);
 | |
| 
 | |
|   gtsam::Pose2 noise(0.5, 0.4, 0.01);
 | |
| 
 | |
|   gtsam::Pose2 rel_pose_ideal = orgA_T_1.between(orgA_T_2);
 | |
|   gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise);
 | |
| 
 | |
|   SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas((Vec(3) << 0.5, 0.5, 0.05)));
 | |
|   SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas((Vec(3) << 5, 5, 1.0)));
 | |
| 
 | |
|   double prior_outlier = 0.5;
 | |
|   double prior_inlier = 0.5;
 | |
| 
 | |
|   gtsam::Values valA, valB;
 | |
|   valA.insert(keyA, orgA_T_1);
 | |
|   valB.insert(keyB, orgB_T_2);
 | |
| 
 | |
|   // Constructor
 | |
|   TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
 | |
|         model_inlier, model_outlier,prior_inlier, prior_outlier);
 | |
| 
 | |
|   gtsam::Values values;
 | |
|   values.insert(key, orgA_T_orgB);
 | |
| 
 | |
|   std::vector<gtsam::Matrix> H_actual(1);
 | |
|   Vector actual_err_wh = g.whitenedError(values, H_actual);
 | |
| 
 | |
|   Matrix H1_actual = H_actual[0];
 | |
| 
 | |
|   double stepsize = 1.0e-9;
 | |
|   Matrix H1_expected = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError, _1,  key, g), orgA_T_orgB, stepsize);
 | |
| //  CHECK( assert_equal(H1_expected, H1_actual, 1e-5));
 | |
| }
 | |
| /////* ************************************************************************** */
 | |
| //TEST (TransformBtwRobotsUnaryFactorEM, jacobian ) {
 | |
| //
 | |
| //  gtsam::Key keyA(1);
 | |
| //  gtsam::Key keyB(2);
 | |
| //
 | |
| //  // Inlier test
 | |
| //  gtsam::Pose2 p1(10.0, 15.0, 0.1);
 | |
| //  gtsam::Pose2 p2(15.0, 15.0, 0.3);
 | |
| //  gtsam::Pose2 noise(0.5, 0.4, 0.01);
 | |
| //  gtsam::Pose2 rel_pose_ideal = p1.between(p2);
 | |
| //  gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise);
 | |
| //
 | |
| //  SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::(Vec(3) << 0.5, 0.5, 0.05)));
 | |
| //  SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::(Vec(3) << 50.0, 50.0, 10.0)));
 | |
| //
 | |
| //  gtsam::Values values;
 | |
| //  values.insert(keyA, p1);
 | |
| //  values.insert(keyB, p2);
 | |
| //
 | |
| //  double prior_outlier = 0.0;
 | |
| //  double prior_inlier = 1.0;
 | |
| //
 | |
| //  TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> f(keyA, keyB, rel_pose_msr, model_inlier, model_outlier,
 | |
| //      prior_inlier, prior_outlier);
 | |
| //
 | |
| //  std::vector<gtsam::Matrix> H_actual(2);
 | |
| //  Vector actual_err_wh = f.whitenedError(values, H_actual);
 | |
| //
 | |
| //  Matrix H1_actual = H_actual[0];
 | |
| //  Matrix H2_actual = H_actual[1];
 | |
| //
 | |
| //  // compare to standard between factor
 | |
| //  BetweenFactor<gtsam::Pose2> h(keyA, keyB, rel_pose_msr, model_inlier );
 | |
| //  Vector actual_err_wh_stnd = h.whitenedError(values);
 | |
| //  Vector actual_err_wh_inlier = (Vec(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
 | |
| //  CHECK( assert_equal(actual_err_wh_stnd, actual_err_wh_inlier, 1e-8));
 | |
| //  std::vector<gtsam::Matrix> H_actual_stnd_unwh(2);
 | |
| //  (void)h.unwhitenedError(values, H_actual_stnd_unwh);
 | |
| //  Matrix H1_actual_stnd_unwh = H_actual_stnd_unwh[0];
 | |
| //  Matrix H2_actual_stnd_unwh = H_actual_stnd_unwh[1];
 | |
| //  Matrix H1_actual_stnd = model_inlier->Whiten(H1_actual_stnd_unwh);
 | |
| //  Matrix H2_actual_stnd = model_inlier->Whiten(H2_actual_stnd_unwh);
 | |
| ////  CHECK( assert_equal(H1_actual_stnd, H1_actual, 1e-8));
 | |
| ////  CHECK( assert_equal(H2_actual_stnd, H2_actual, 1e-8));
 | |
| //
 | |
| //  double stepsize = 1.0e-9;
 | |
| //  Matrix H1_expected = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError, _1, p2, keyA, keyB, f), p1, stepsize);
 | |
| //  Matrix H2_expected = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError, p1, _1, keyA, keyB, f), p2, stepsize);
 | |
| //
 | |
| //
 | |
| //  // try to check numerical derivatives of a standard between factor
 | |
| //  Matrix H1_expected_stnd = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError_standard, _1, p2, keyA, keyB, h), p1, stepsize);
 | |
| //  CHECK( assert_equal(H1_expected_stnd, H1_actual_stnd, 1e-5));
 | |
| //
 | |
| //
 | |
| //  CHECK( assert_equal(H1_expected, H1_actual, 1e-8));
 | |
| //  CHECK( assert_equal(H2_expected, H2_actual, 1e-8));
 | |
| //
 | |
| //}
 | |
| 
 | |
| //#endif
 | |
| 
 | |
| /* ************************************************************************* */
 | |
|   int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |