221 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    Rot3.h
 | |
|  * @brief   Rotation
 | |
|  * @author  Alireza Fathi
 | |
|  * @author  Christian Potthast
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| // \callgraph
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include "Point3.h"
 | |
| #include "Testable.h"
 | |
| #include "Lie.h"
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /* 3D Rotation */
 | |
|   class Rot3: Testable<Rot3>, public Lie<Rot3> {
 | |
|   private:
 | |
|     /** we store columns ! */
 | |
|     Point3 r1_, r2_, r3_;  
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     /** default constructor, unit rotation */
 | |
|     Rot3() :
 | |
|       r1_(Point3(1.0,0.0,0.0)),
 | |
|       r2_(Point3(0.0,1.0,0.0)),
 | |
|       r3_(Point3(0.0,0.0,1.0)) {}
 | |
| 
 | |
|     /** constructor from columns */
 | |
|     Rot3(const Point3& r1, const Point3& r2, const Point3& r3) :
 | |
|       r1_(r1), r2_(r2), r3_(r3) {}
 | |
| 
 | |
|     /**  constructor from vector */
 | |
|     Rot3(const Vector &v) :
 | |
|       r1_(Point3(v(0),v(1),v(2))),
 | |
|       r2_(Point3(v(3),v(4),v(5))),
 | |
|       r3_(Point3(v(6),v(7),v(8))) {}
 | |
| 
 | |
|     /** constructor from doubles in *row* order !!! */
 | |
|     Rot3(double R11, double R12, double R13,
 | |
|         double R21, double R22, double R23,
 | |
|         double R31, double R32, double R33) :
 | |
|           r1_(Point3(R11, R21, R31)),
 | |
|           r2_(Point3(R12, R22, R32)),
 | |
|           r3_(Point3(R13, R23, R33)) {}
 | |
| 
 | |
|     /** constructor from matrix */
 | |
|     Rot3(const Matrix& R):
 | |
|       r1_(Point3(R(0,0), R(1,0), R(2,0))),
 | |
|       r2_(Point3(R(0,1), R(1,1), R(2,1))),
 | |
|       r3_(Point3(R(0,2), R(1,2), R(2,2))) {}
 | |
| 
 | |
|     /** Static member function to generate some well known rotations */
 | |
| 
 | |
|     /**
 | |
|      * Rotations around axes as in http://en.wikipedia.org/wiki/Rotation_matrix
 | |
|      * Counterclockwise when looking from unchanging axis.
 | |
|      */
 | |
|     static Rot3 Rx(double t);
 | |
|     static Rot3 Ry(double t);
 | |
|     static Rot3 Rz(double t);
 | |
|     static Rot3 RzRyRx(double x, double y, double z);
 | |
| 
 | |
|     /**
 | |
|      * Tait-Bryan system from Spatial Reference Model (SRM) (x,y,z) = (roll,pitch,yaw)
 | |
|      * as described in http://www.sedris.org/wg8home/Documents/WG80462.pdf
 | |
|      * Assumes vehicle coordinate frame X forward, Y right, Z down
 | |
|      */
 | |
|     static Rot3 yaw  (double t) { return Rz(t);} // positive yaw is to right (as in aircraft heading)
 | |
|     static Rot3 pitch(double t) { return Ry(t);} // positive pitch is up (increasing aircraft altitude)
 | |
|     static Rot3 roll (double t) { return Rx(t);} // positive roll is to right (increasing yaw in aircraft)
 | |
|     static Rot3 ypr  (double y, double p, double r) { return RzRyRx(r,p,y);}
 | |
| 
 | |
|     /** print */
 | |
|     void print(const std::string& s="R") const { gtsam::print(matrix(), s);}
 | |
| 
 | |
|     /** equals with an tolerance */
 | |
|     bool equals(const Rot3& p, double tol = 1e-9) const;
 | |
| 
 | |
|     /** return 3*3 rotation matrix */
 | |
|     Matrix matrix() const;
 | |
| 
 | |
|     /** return 3*3 transpose (inverse) rotation matrix   */
 | |
|     Matrix transpose() const;
 | |
| 
 | |
|     /** returns column vector specified by index */
 | |
|     Point3 column(int index) const;
 | |
|     Point3 r1() const { return r1_; }
 | |
|     Point3 r2() const { return r2_; }
 | |
|     Point3 r3() const { return r3_; }
 | |
| 
 | |
|     /**
 | |
|      * Use RQ to calculate xyz angle representation
 | |
|      * @return a vector containing x,y,z s.t. R = Rot3::RzRyRx(x,y,z)
 | |
|      */
 | |
|     Vector xyz() const;
 | |
| 
 | |
|     /**
 | |
|      * Use RQ to calculate yaw-pitch-roll angle representation
 | |
|      * @return a vector containing ypr s.t. R = Rot3::ypr(y,p,r)
 | |
|      */
 | |
|     Vector ypr() const;
 | |
| 
 | |
|   private:
 | |
|     /** Serialization function */
 | |
|     friend class boost::serialization::access;
 | |
|     template<class Archive>
 | |
|     void serialize(Archive & ar, const unsigned int version)
 | |
|     {
 | |
|       ar & BOOST_SERIALIZATION_NVP(r1_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(r2_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(r3_);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /** Global print calls member function */
 | |
|   inline void print(const Rot3& r, std::string& s) { r.print(s); }
 | |
|   inline void print(const Rot3& r) { r.print(); }
 | |
| 
 | |
|   /**
 | |
|    * Rodriguez' formula to compute an incremental rotation matrix
 | |
|    * @param   w is the rotation axis, unit length
 | |
|    * @param   theta rotation angle
 | |
|    * @return incremental rotation matrix
 | |
|    */
 | |
|   Rot3 rodriguez(const Vector& w, double theta);
 | |
| 
 | |
|   /**
 | |
|    * Rodriguez' formula to compute an incremental rotation matrix
 | |
|    * @param v a vector of incremental roll,pitch,yaw
 | |
|    * @return incremental rotation matrix
 | |
|    */
 | |
|   Rot3 rodriguez(const Vector& v);
 | |
| 
 | |
|   /**
 | |
|    * Rodriguez' formula to compute an incremental rotation matrix
 | |
|    * @param wx
 | |
|    * @param wy
 | |
|    * @param wz
 | |
|    * @return incremental rotation matrix
 | |
|    */
 | |
|   inline Rot3 rodriguez(double wx, double wy, double wz) { return rodriguez(Vector_(3,wx,wy,wz));}
 | |
| 
 | |
|   /** return DOF, dimensionality of tangent space */
 | |
|   inline size_t dim(const Rot3&) { return 3; }
 | |
| 
 | |
|   // Exponential map at identity - create a rotation from canonical coordinates
 | |
|   // using Rodriguez' formula
 | |
|   template<> inline Rot3 expmap(const Vector& v) {
 | |
|     if(zero(v)) return Rot3();
 | |
|     else return rodriguez(v);
 | |
|   }
 | |
| 
 | |
|   // Log map at identity - return the canonical coordinates of this rotation
 | |
|   Vector logmap(const Rot3& R);
 | |
| 
 | |
|   // Compose two rotations
 | |
|   inline Rot3 compose(const Rot3& R1, const Rot3& R2) {
 | |
|     return Rot3(R1.matrix() * R2.matrix()); }
 | |
| 
 | |
|   // Find the inverse rotation R^T s.t. inverse(R)*R = Rot3()
 | |
|   inline Rot3 inverse(const Rot3& R) {
 | |
|     return Rot3(
 | |
|         R.r1().x(), R.r1().y(), R.r1().z(),
 | |
|         R.r2().x(), R.r2().y(), R.r2().z(),
 | |
|         R.r3().x(), R.r3().y(), R.r3().z());
 | |
|   }
 | |
| 
 | |
|   // and its derivative
 | |
|   inline Matrix Dinverse(Rot3 R) { return -R.matrix();}
 | |
| 
 | |
|   /**
 | |
|    * rotate point from rotated coordinate frame to 
 | |
|    * world = R*p
 | |
|    */
 | |
|   Point3 rotate(const Rot3& R, const Point3& p);
 | |
|   inline Point3 operator*(const Rot3& R, const Point3& p) { return rotate(R,p); }
 | |
|   Matrix Drotate1(const Rot3& R, const Point3& p);
 | |
|   Matrix Drotate2(const Rot3& R); // does not depend on p !
 | |
| 
 | |
|   /**
 | |
|    * rotate point from world to rotated 
 | |
|    * frame = R'*p
 | |
|    */
 | |
|   Point3 unrotate(const Rot3& R, const Point3& p);
 | |
|   Matrix Dunrotate1(const Rot3& R, const Point3& p);
 | |
|   Matrix Dunrotate2(const Rot3& R); // does not depend on p !
 | |
| 
 | |
|   /**
 | |
|    * compose two rotations i.e., R=R1*R2
 | |
|    */
 | |
|   //Rot3    compose (const Rot3& R1, const Rot3& R2);
 | |
|   Matrix Dcompose1(const Rot3& R1, const Rot3& R2);
 | |
|   Matrix Dcompose2(const Rot3& R1, const Rot3& R2);
 | |
| 
 | |
|   /**
 | |
|    * Return relative rotation D s.t. R2=D*R1, i.e. D=R2*R1'
 | |
|    */
 | |
|   //Rot3    between (const Rot3& R1, const Rot3& R2);
 | |
|   Matrix Dbetween1(const Rot3& R1, const Rot3& R2);
 | |
|   Matrix Dbetween2(const Rot3& R1, const Rot3& R2);
 | |
| 
 | |
|   /**
 | |
|    * [RQ] receives a 3 by 3 matrix and returns an upper triangular matrix R
 | |
|    * and 3 rotation angles corresponding to the rotation matrix Q=Qz'*Qy'*Qx'
 | |
|    * such that A = R*Q = R*Qz'*Qy'*Qx'. When A is a rotation matrix, R will
 | |
|    * be the identity and Q is a yaw-pitch-roll decomposition of A.
 | |
|    * The implementation uses Givens rotations and is based on Hartley-Zisserman.
 | |
|    * @param a 3 by 3 matrix A=RQ
 | |
|    * @return an upper triangular matrix R
 | |
|    * @return a vector [thetax, thetay, thetaz] in radians.
 | |
|    */
 | |
|   std::pair<Matrix,Vector> RQ(const Matrix& A);
 | |
| 
 | |
| }
 |