175 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file DSF.h
 | 
						|
 * @date Mar 26, 2010
 | 
						|
 * @author Kai Ni
 | 
						|
 * @brief An implementation of Disjoint set forests (see CLR page 446 and up)
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <list>
 | 
						|
#include <set>
 | 
						|
#include <map>
 | 
						|
#include <boost/foreach.hpp>
 | 
						|
#include <gtsam_unstable/base/BTree.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
  /**
 | 
						|
   * Disjoint Set Forest class
 | 
						|
   *
 | 
						|
   * Quoting from CLR: A disjoint-set data structure maintains a collection
 | 
						|
   * S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
 | 
						|
   * a representative, which is some member of the set.
 | 
						|
   *
 | 
						|
   * @addtogroup base
 | 
						|
   */
 | 
						|
  template <class KEY>
 | 
						|
  class DSF : protected BTree<KEY, KEY> {
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef KEY Label; // label can be different from key, but for now they are same
 | 
						|
    typedef DSF<KEY> Self;
 | 
						|
    typedef std::set<KEY> Set;
 | 
						|
    typedef BTree<KEY, Label> Tree;
 | 
						|
    typedef std::pair<KEY, Label> KeyLabel;
 | 
						|
 | 
						|
    // constructor
 | 
						|
    DSF() : Tree() { }
 | 
						|
 | 
						|
    // constructor
 | 
						|
    DSF(const Tree& tree) : Tree(tree) {}
 | 
						|
 | 
						|
    // constructor with a list of unconnected keys
 | 
						|
    DSF(const std::list<KEY>& keys) : Tree() { BOOST_FOREACH(const KEY& key, keys) *this = this->add(key, key); }
 | 
						|
 | 
						|
    // constructor with a set of unconnected keys
 | 
						|
    DSF(const std::set<KEY>& keys) : Tree() { BOOST_FOREACH(const KEY& key, keys) *this = this->add(key, key); }
 | 
						|
 | 
						|
    // create a new singleton, does nothing if already exists
 | 
						|
    Self makeSet(const KEY& key) const { if (this->mem(key)) return *this; else return this->add(key, key); }
 | 
						|
 | 
						|
    // find the label of the set in which {key} lives
 | 
						|
    Label findSet(const KEY& key) const {
 | 
						|
      KEY parent = this->find(key);
 | 
						|
      return parent == key ? key : findSet(parent); }
 | 
						|
 | 
						|
    // return a new DSF where x and y are in the same set. Kai: the caml implementation is not const, and I followed
 | 
						|
    Self makeUnion(const KEY& key1, const KEY& key2) { return this->add(findSet_(key2), findSet_(key1));  }
 | 
						|
 | 
						|
    // the in-place version of makeUnion
 | 
						|
    void makeUnionInPlace(const KEY& key1, const KEY& key2) { *this = this->add(findSet_(key2), findSet_(key1)); }
 | 
						|
 | 
						|
    // create a new singleton with two connected keys
 | 
						|
    Self makePair(const KEY& key1, const KEY& key2) const { return makeSet(key1).makeSet(key2).makeUnion(key1, key2); }
 | 
						|
 | 
						|
    // create a new singleton with a list of fully connected keys
 | 
						|
    Self makeList(const std::list<KEY>& keys) const {
 | 
						|
      Self t = *this;
 | 
						|
      BOOST_FOREACH(const KEY& key, keys)
 | 
						|
        t = t.makePair(key, keys.front());
 | 
						|
      return t;
 | 
						|
    }
 | 
						|
 | 
						|
    // return a dsf in which all find_set operations will be O(1) due to path compression.
 | 
						|
    DSF flatten() const {
 | 
						|
      DSF t = *this;
 | 
						|
      BOOST_FOREACH(const KeyLabel& pair, (Tree)t)
 | 
						|
        t.findSet_(pair.first);
 | 
						|
      return t;
 | 
						|
    }
 | 
						|
 | 
						|
    // maps f over all keys, must be invertible
 | 
						|
    DSF map(boost::function<KEY(const KEY&)> func) const {
 | 
						|
      DSF t;
 | 
						|
      BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | 
						|
        t = t.add(func(pair.first), func(pair.second));
 | 
						|
      return t;
 | 
						|
    }
 | 
						|
 | 
						|
    // return the number of sets
 | 
						|
    size_t numSets() const {
 | 
						|
      size_t num = 0;
 | 
						|
      BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | 
						|
        if (pair.first == pair.second) num++;
 | 
						|
      return num;
 | 
						|
    }
 | 
						|
 | 
						|
    // return the numer of keys
 | 
						|
    size_t size() const { return Tree::size(); }
 | 
						|
 | 
						|
    // return all sets, i.e. a partition of all elements
 | 
						|
    std::map<Label, Set> sets() const {
 | 
						|
      std::map<Label, Set> sets;
 | 
						|
      BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | 
						|
        sets[findSet(pair.second)].insert(pair.first);
 | 
						|
      return sets;
 | 
						|
    }
 | 
						|
 | 
						|
    // return a partition of the given elements {keys}
 | 
						|
    std::map<Label, Set> partition(const std::list<KEY>& keys) const {
 | 
						|
      std::map<Label, Set> partitions;
 | 
						|
      BOOST_FOREACH(const KEY& key, keys)
 | 
						|
        partitions[findSet(key)].insert(key);
 | 
						|
      return partitions;
 | 
						|
    }
 | 
						|
 | 
						|
    // get the nodes in the tree with the given label
 | 
						|
    Set set(const Label& label) const {
 | 
						|
      Set set;
 | 
						|
      BOOST_FOREACH(const KeyLabel& pair, (Tree)*this) {
 | 
						|
        if (pair.second == label || findSet(pair.second) == label)
 | 
						|
          set.insert(pair.first);
 | 
						|
      }
 | 
						|
      return set;
 | 
						|
    }
 | 
						|
 | 
						|
    /** equality */
 | 
						|
    bool operator==(const Self& t) const { return (Tree)*this == (Tree)t;  }
 | 
						|
 | 
						|
    /** inequality */
 | 
						|
    bool operator!=(const Self& t) const { return (Tree)*this != (Tree)t;  }
 | 
						|
 | 
						|
    // print the object
 | 
						|
    void print(const std::string& name = "DSF") const {
 | 
						|
      std::cout << name << std::endl;
 | 
						|
      BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | 
						|
        std::cout << (std::string)pair.first << " " << (std::string)pair.second << std::endl;
 | 
						|
    }
 | 
						|
 | 
						|
  protected:
 | 
						|
 | 
						|
    /**
 | 
						|
     * same as findSet except with path compression: After we have traversed the path to
 | 
						|
     * the root, each parent pointer is made to directly point to it
 | 
						|
     */
 | 
						|
    KEY findSet_(const KEY& key) {
 | 
						|
      KEY parent = this->find(key);
 | 
						|
      if (parent == key)
 | 
						|
        return parent;
 | 
						|
      else {
 | 
						|
        KEY label = findSet_(parent);
 | 
						|
        *this = this->add(key, label);
 | 
						|
        return label;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  };
 | 
						|
 | 
						|
  // shortcuts
 | 
						|
  typedef DSF<int> DSFInt;
 | 
						|
 | 
						|
} // namespace gtsam
 |