647 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			647 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
| // Ceres Solver - A fast non-linear least squares minimizer
 | |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 | |
| // http://code.google.com/p/ceres-solver/
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are met:
 | |
| //
 | |
| // * Redistributions of source code must retain the above copyright notice,
 | |
| //   this list of conditions and the following disclaimer.
 | |
| // * Redistributions in binary form must reproduce the above copyright notice,
 | |
| //   this list of conditions and the following disclaimer in the documentation
 | |
| //   and/or other materials provided with the distribution.
 | |
| // * Neither the name of Google Inc. nor the names of its contributors may be
 | |
| //   used to endorse or promote products derived from this software without
 | |
| //   specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| // POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // Author: keir@google.com (Keir Mierle)
 | |
| //         sameeragarwal@google.com (Sameer Agarwal)
 | |
| //
 | |
| // Templated functions for manipulating rotations. The templated
 | |
| // functions are useful when implementing functors for automatic
 | |
| // differentiation.
 | |
| //
 | |
| // In the following, the Quaternions are laid out as 4-vectors, thus:
 | |
| //
 | |
| //   q[0]  scalar part.
 | |
| //   q[1]  coefficient of i.
 | |
| //   q[2]  coefficient of j.
 | |
| //   q[3]  coefficient of k.
 | |
| //
 | |
| // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
 | |
| 
 | |
| #ifndef CERES_PUBLIC_ROTATION_H_
 | |
| #define CERES_PUBLIC_ROTATION_H_
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <assert.h>
 | |
| #define DCHECK assert
 | |
| 
 | |
| namespace ceres {
 | |
| 
 | |
| // Trivial wrapper to index linear arrays as matrices, given a fixed
 | |
| // column and row stride. When an array "T* array" is wrapped by a
 | |
| //
 | |
| //   (const) MatrixAdapter<T, row_stride, col_stride> M"
 | |
| //
 | |
| // the expression  M(i, j) is equivalent to
 | |
| //
 | |
| //   arrary[i * row_stride + j * col_stride]
 | |
| //
 | |
| // Conversion functions to and from rotation matrices accept
 | |
| // MatrixAdapters to permit using row-major and column-major layouts,
 | |
| // and rotation matrices embedded in larger matrices (such as a 3x4
 | |
| // projection matrix).
 | |
| template <typename T, int row_stride, int col_stride>
 | |
| struct MatrixAdapter;
 | |
| 
 | |
| // Convenience functions to create a MatrixAdapter that treats the
 | |
| // array pointed to by "pointer" as a 3x3 (contiguous) column-major or
 | |
| // row-major matrix.
 | |
| template <typename T>
 | |
| MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);
 | |
| 
 | |
| template <typename T>
 | |
| MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);
 | |
| 
 | |
| // Convert a value in combined axis-angle representation to a quaternion.
 | |
| // The value angle_axis is a triple whose norm is an angle in radians,
 | |
| // and whose direction is aligned with the axis of rotation,
 | |
| // and quaternion is a 4-tuple that will contain the resulting quaternion.
 | |
| // The implementation may be used with auto-differentiation up to the first
 | |
| // derivative, higher derivatives may have unexpected results near the origin.
 | |
| template<typename T>
 | |
| void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);
 | |
| 
 | |
| // Convert a quaternion to the equivalent combined axis-angle representation.
 | |
| // The value quaternion must be a unit quaternion - it is not normalized first,
 | |
| // and angle_axis will be filled with a value whose norm is the angle of
 | |
| // rotation in radians, and whose direction is the axis of rotation.
 | |
| // The implemention may be used with auto-differentiation up to the first
 | |
| // derivative, higher derivatives may have unexpected results near the origin.
 | |
| template<typename T>
 | |
| void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);
 | |
| 
 | |
| // Conversions between 3x3 rotation matrix (in column major order) and
 | |
| // axis-angle rotation representations.  Templated for use with
 | |
| // autodifferentiation.
 | |
| template <typename T>
 | |
| void RotationMatrixToAngleAxis(const T* R, T* angle_axis);
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride>
 | |
| void RotationMatrixToAngleAxis(
 | |
|     const MatrixAdapter<const T, row_stride, col_stride>& R,
 | |
|     T* angle_axis);
 | |
| 
 | |
| template <typename T>
 | |
| void AngleAxisToRotationMatrix(const T* angle_axis, T* R);
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride>
 | |
| void AngleAxisToRotationMatrix(
 | |
|     const T* angle_axis,
 | |
|     const MatrixAdapter<T, row_stride, col_stride>& R);
 | |
| 
 | |
| // Conversions between 3x3 rotation matrix (in row major order) and
 | |
| // Euler angle (in degrees) rotation representations.
 | |
| //
 | |
| // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
 | |
| // axes, respectively.  They are applied in that same order, so the
 | |
| // total rotation R is Rz * Ry * Rx.
 | |
| template <typename T>
 | |
| void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride>
 | |
| void EulerAnglesToRotationMatrix(
 | |
|     const T* euler,
 | |
|     const MatrixAdapter<T, row_stride, col_stride>& R);
 | |
| 
 | |
| // Convert a 4-vector to a 3x3 scaled rotation matrix.
 | |
| //
 | |
| // The choice of rotation is such that the quaternion [1 0 0 0] goes to an
 | |
| // identity matrix and for small a, b, c the quaternion [1 a b c] goes to
 | |
| // the matrix
 | |
| //
 | |
| //         [  0 -c  b ]
 | |
| //   I + 2 [  c  0 -a ] + higher order terms
 | |
| //         [ -b  a  0 ]
 | |
| //
 | |
| // which corresponds to a Rodrigues approximation, the last matrix being
 | |
| // the cross-product matrix of [a b c]. Together with the property that
 | |
| // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
 | |
| //
 | |
| // The rotation matrix is row-major.
 | |
| //
 | |
| // No normalization of the quaternion is performed, i.e.
 | |
| // R = ||q||^2 * Q, where Q is an orthonormal matrix
 | |
| // such that det(Q) = 1 and Q*Q' = I
 | |
| template <typename T> inline
 | |
| void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride> inline
 | |
| void QuaternionToScaledRotation(
 | |
|     const T q[4],
 | |
|     const MatrixAdapter<T, row_stride, col_stride>& R);
 | |
| 
 | |
| // Same as above except that the rotation matrix is normalized by the
 | |
| // Frobenius norm, so that R * R' = I (and det(R) = 1).
 | |
| template <typename T> inline
 | |
| void QuaternionToRotation(const T q[4], T R[3 * 3]);
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride> inline
 | |
| void QuaternionToRotation(
 | |
|     const T q[4],
 | |
|     const MatrixAdapter<T, row_stride, col_stride>& R);
 | |
| 
 | |
| // Rotates a point pt by a quaternion q:
 | |
| //
 | |
| //   result = R(q) * pt
 | |
| //
 | |
| // Assumes the quaternion is unit norm. This assumption allows us to
 | |
| // write the transform as (something)*pt + pt, as is clear from the
 | |
| // formula below. If you pass in a quaternion with |q|^2 = 2 then you
 | |
| // WILL NOT get back 2 times the result you get for a unit quaternion.
 | |
| template <typename T> inline
 | |
| void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
 | |
| 
 | |
| // With this function you do not need to assume that q has unit norm.
 | |
| // It does assume that the norm is non-zero.
 | |
| template <typename T> inline
 | |
| void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
 | |
| 
 | |
| // zw = z * w, where * is the Quaternion product between 4 vectors.
 | |
| template<typename T> inline
 | |
| void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
 | |
| 
 | |
| // xy = x cross y;
 | |
| template<typename T> inline
 | |
| void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
 | |
| 
 | |
| template<typename T> inline
 | |
| T DotProduct(const T x[3], const T y[3]);
 | |
| 
 | |
| // y = R(angle_axis) * x;
 | |
| template<typename T> inline
 | |
| void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
 | |
| 
 | |
| // --- IMPLEMENTATION
 | |
| 
 | |
| template<typename T, int row_stride, int col_stride>
 | |
| struct MatrixAdapter {
 | |
|   T* pointer_;
 | |
|   explicit MatrixAdapter(T* pointer)
 | |
|     : pointer_(pointer)
 | |
|   {}
 | |
| 
 | |
|   T& operator()(int r, int c) const {
 | |
|     return pointer_[r * row_stride + c * col_stride];
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
 | |
|   return MatrixAdapter<T, 1, 3>(pointer);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
 | |
|   return MatrixAdapter<T, 3, 1>(pointer);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
 | |
|   const T& a0 = angle_axis[0];
 | |
|   const T& a1 = angle_axis[1];
 | |
|   const T& a2 = angle_axis[2];
 | |
|   const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
 | |
| 
 | |
|   // For points not at the origin, the full conversion is numerically stable.
 | |
|   if (theta_squared > T(0.0)) {
 | |
|     const T theta = sqrt(theta_squared);
 | |
|     const T half_theta = theta * T(0.5);
 | |
|     const T k = sin(half_theta) / theta;
 | |
|     quaternion[0] = cos(half_theta);
 | |
|     quaternion[1] = a0 * k;
 | |
|     quaternion[2] = a1 * k;
 | |
|     quaternion[3] = a2 * k;
 | |
|   } else {
 | |
|     // At the origin, sqrt() will produce NaN in the derivative since
 | |
|     // the argument is zero.  By approximating with a Taylor series,
 | |
|     // and truncating at one term, the value and first derivatives will be
 | |
|     // computed correctly when Jets are used.
 | |
|     const T k(0.5);
 | |
|     quaternion[0] = T(1.0);
 | |
|     quaternion[1] = a0 * k;
 | |
|     quaternion[2] = a1 * k;
 | |
|     quaternion[3] = a2 * k;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
 | |
|   const T& q1 = quaternion[1];
 | |
|   const T& q2 = quaternion[2];
 | |
|   const T& q3 = quaternion[3];
 | |
|   const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
 | |
| 
 | |
|   // For quaternions representing non-zero rotation, the conversion
 | |
|   // is numerically stable.
 | |
|   if (sin_squared_theta > T(0.0)) {
 | |
|     const T sin_theta = sqrt(sin_squared_theta);
 | |
|     const T& cos_theta = quaternion[0];
 | |
| 
 | |
|     // If cos_theta is negative, theta is greater than pi/2, which
 | |
|     // means that angle for the angle_axis vector which is 2 * theta
 | |
|     // would be greater than pi.
 | |
|     //
 | |
|     // While this will result in the correct rotation, it does not
 | |
|     // result in a normalized angle-axis vector.
 | |
|     //
 | |
|     // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
 | |
|     // which is equivalent saying
 | |
|     //
 | |
|     //   theta - pi = atan(sin(theta - pi), cos(theta - pi))
 | |
|     //              = atan(-sin(theta), -cos(theta))
 | |
|     //
 | |
|     const T two_theta =
 | |
|         T(2.0) * ((cos_theta < 0.0)
 | |
|                   ? atan2(-sin_theta, -cos_theta)
 | |
|                   : atan2(sin_theta, cos_theta));
 | |
|     const T k = two_theta / sin_theta;
 | |
|     angle_axis[0] = q1 * k;
 | |
|     angle_axis[1] = q2 * k;
 | |
|     angle_axis[2] = q3 * k;
 | |
|   } else {
 | |
|     // For zero rotation, sqrt() will produce NaN in the derivative since
 | |
|     // the argument is zero.  By approximating with a Taylor series,
 | |
|     // and truncating at one term, the value and first derivatives will be
 | |
|     // computed correctly when Jets are used.
 | |
|     const T k(2.0);
 | |
|     angle_axis[0] = q1 * k;
 | |
|     angle_axis[1] = q2 * k;
 | |
|     angle_axis[2] = q3 * k;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The conversion of a rotation matrix to the angle-axis form is
 | |
| // numerically problematic when then rotation angle is close to zero
 | |
| // or to Pi. The following implementation detects when these two cases
 | |
| // occurs and deals with them by taking code paths that are guaranteed
 | |
| // to not perform division by a small number.
 | |
| template <typename T>
 | |
| inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
 | |
|   RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
 | |
| }
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride>
 | |
| void RotationMatrixToAngleAxis(
 | |
|     const MatrixAdapter<const T, row_stride, col_stride>& R,
 | |
|     T* angle_axis) {
 | |
|   // x = k * 2 * sin(theta), where k is the axis of rotation.
 | |
|   angle_axis[0] = R(2, 1) - R(1, 2);
 | |
|   angle_axis[1] = R(0, 2) - R(2, 0);
 | |
|   angle_axis[2] = R(1, 0) - R(0, 1);
 | |
| 
 | |
|   static const T kOne = T(1.0);
 | |
|   static const T kTwo = T(2.0);
 | |
| 
 | |
|   // Since the right hand side may give numbers just above 1.0 or
 | |
|   // below -1.0 leading to atan misbehaving, we threshold.
 | |
|   T costheta = std::min(std::max((R(0, 0) + R(1, 1) + R(2, 2) - kOne) / kTwo,
 | |
|                                  T(-1.0)),
 | |
|                         kOne);
 | |
| 
 | |
|   // sqrt is guaranteed to give non-negative results, so we only
 | |
|   // threshold above.
 | |
|   T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
 | |
|                              angle_axis[1] * angle_axis[1] +
 | |
|                              angle_axis[2] * angle_axis[2]) / kTwo,
 | |
|                         kOne);
 | |
| 
 | |
|   // Use the arctan2 to get the right sign on theta
 | |
|   const T theta = atan2(sintheta, costheta);
 | |
| 
 | |
|   // Case 1: sin(theta) is large enough, so dividing by it is not a
 | |
|   // problem. We do not use abs here, because while jets.h imports
 | |
|   // std::abs into the namespace, here in this file, abs resolves to
 | |
|   // the int version of the function, which returns zero always.
 | |
|   //
 | |
|   // We use a threshold much larger then the machine epsilon, because
 | |
|   // if sin(theta) is small, not only do we risk overflow but even if
 | |
|   // that does not occur, just dividing by a small number will result
 | |
|   // in numerical garbage. So we play it safe.
 | |
|   static const double kThreshold = 1e-12;
 | |
|   if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
 | |
|     const T r = theta / (kTwo * sintheta);
 | |
|     for (int i = 0; i < 3; ++i) {
 | |
|       angle_axis[i] *= r;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
 | |
|   // approximation.
 | |
|   if (costheta > 0.0) {
 | |
|     const T kHalf = T(0.5);
 | |
|     for (int i = 0; i < 3; ++i) {
 | |
|       angle_axis[i] *= kHalf;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Case 3: theta ~ pi, this is the hard case. Since theta is large,
 | |
|   // and sin(theta) is small. Dividing by theta by sin(theta) will
 | |
|   // either give an overflow or worse still numerically meaningless
 | |
|   // results. Thus we use an alternate more complicated formula
 | |
|   // here.
 | |
| 
 | |
|   // Since cos(theta) is negative, division by (1-cos(theta)) cannot
 | |
|   // overflow.
 | |
|   const T inv_one_minus_costheta = kOne / (kOne - costheta);
 | |
| 
 | |
|   // We now compute the absolute value of coordinates of the axis
 | |
|   // vector using the diagonal entries of R. To resolve the sign of
 | |
|   // these entries, we compare the sign of angle_axis[i]*sin(theta)
 | |
|   // with the sign of sin(theta). If they are the same, then
 | |
|   // angle_axis[i] should be positive, otherwise negative.
 | |
|   for (int i = 0; i < 3; ++i) {
 | |
|     angle_axis[i] = theta * sqrt((R(i, i) - costheta) * inv_one_minus_costheta);
 | |
|     if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
 | |
|         ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
 | |
|       angle_axis[i] = -angle_axis[i];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
 | |
|   AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
 | |
| }
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride>
 | |
| void AngleAxisToRotationMatrix(
 | |
|     const T* angle_axis,
 | |
|     const MatrixAdapter<T, row_stride, col_stride>& R) {
 | |
|   static const T kOne = T(1.0);
 | |
|   const T theta2 = DotProduct(angle_axis, angle_axis);
 | |
|   if (theta2 > T(std::numeric_limits<double>::epsilon())) {
 | |
|     // We want to be careful to only evaluate the square root if the
 | |
|     // norm of the angle_axis vector is greater than zero. Otherwise
 | |
|     // we get a division by zero.
 | |
|     const T theta = sqrt(theta2);
 | |
|     const T wx = angle_axis[0] / theta;
 | |
|     const T wy = angle_axis[1] / theta;
 | |
|     const T wz = angle_axis[2] / theta;
 | |
| 
 | |
|     const T costheta = cos(theta);
 | |
|     const T sintheta = sin(theta);
 | |
| 
 | |
|     R(0, 0) =     costheta   + wx*wx*(kOne -    costheta);
 | |
|     R(1, 0) =  wz*sintheta   + wx*wy*(kOne -    costheta);
 | |
|     R(2, 0) = -wy*sintheta   + wx*wz*(kOne -    costheta);
 | |
|     R(0, 1) =  wx*wy*(kOne - costheta)     - wz*sintheta;
 | |
|     R(1, 1) =     costheta   + wy*wy*(kOne -    costheta);
 | |
|     R(2, 1) =  wx*sintheta   + wy*wz*(kOne -    costheta);
 | |
|     R(0, 2) =  wy*sintheta   + wx*wz*(kOne -    costheta);
 | |
|     R(1, 2) = -wx*sintheta   + wy*wz*(kOne -    costheta);
 | |
|     R(2, 2) =     costheta   + wz*wz*(kOne -    costheta);
 | |
|   } else {
 | |
|     // Near zero, we switch to using the first order Taylor expansion.
 | |
|     R(0, 0) =  kOne;
 | |
|     R(1, 0) =  angle_axis[2];
 | |
|     R(2, 0) = -angle_axis[1];
 | |
|     R(0, 1) = -angle_axis[2];
 | |
|     R(1, 1) =  kOne;
 | |
|     R(2, 1) =  angle_axis[0];
 | |
|     R(0, 2) =  angle_axis[1];
 | |
|     R(1, 2) = -angle_axis[0];
 | |
|     R(2, 2) = kOne;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline void EulerAnglesToRotationMatrix(const T* euler,
 | |
|                                         const int row_stride_parameter,
 | |
|                                         T* R) {
 | |
|   DCHECK(row_stride_parameter==3);
 | |
|   EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
 | |
| }
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride>
 | |
| void EulerAnglesToRotationMatrix(
 | |
|     const T* euler,
 | |
|     const MatrixAdapter<T, row_stride, col_stride>& R) {
 | |
|   const double kPi = 3.14159265358979323846;
 | |
|   const T degrees_to_radians(kPi / 180.0);
 | |
| 
 | |
|   const T pitch(euler[0] * degrees_to_radians);
 | |
|   const T roll(euler[1] * degrees_to_radians);
 | |
|   const T yaw(euler[2] * degrees_to_radians);
 | |
| 
 | |
|   const T c1 = cos(yaw);
 | |
|   const T s1 = sin(yaw);
 | |
|   const T c2 = cos(roll);
 | |
|   const T s2 = sin(roll);
 | |
|   const T c3 = cos(pitch);
 | |
|   const T s3 = sin(pitch);
 | |
| 
 | |
|   R(0, 0) = c1*c2;
 | |
|   R(0, 1) = -s1*c3 + c1*s2*s3;
 | |
|   R(0, 2) = s1*s3 + c1*s2*c3;
 | |
| 
 | |
|   R(1, 0) = s1*c2;
 | |
|   R(1, 1) = c1*c3 + s1*s2*s3;
 | |
|   R(1, 2) = -c1*s3 + s1*s2*c3;
 | |
| 
 | |
|   R(2, 0) = -s2;
 | |
|   R(2, 1) = c2*s3;
 | |
|   R(2, 2) = c2*c3;
 | |
| }
 | |
| 
 | |
| template <typename T> inline
 | |
| void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
 | |
|   QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
 | |
| }
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride> inline
 | |
| void QuaternionToScaledRotation(
 | |
|     const T q[4],
 | |
|     const MatrixAdapter<T, row_stride, col_stride>& R) {
 | |
|   // Make convenient names for elements of q.
 | |
|   T a = q[0];
 | |
|   T b = q[1];
 | |
|   T c = q[2];
 | |
|   T d = q[3];
 | |
|   // This is not to eliminate common sub-expression, but to
 | |
|   // make the lines shorter so that they fit in 80 columns!
 | |
|   T aa = a * a;
 | |
|   T ab = a * b;
 | |
|   T ac = a * c;
 | |
|   T ad = a * d;
 | |
|   T bb = b * b;
 | |
|   T bc = b * c;
 | |
|   T bd = b * d;
 | |
|   T cc = c * c;
 | |
|   T cd = c * d;
 | |
|   T dd = d * d;
 | |
| 
 | |
|   R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad);  R(0, 2) = T(2) * (ac + bd);  // NOLINT
 | |
|   R(1, 0) = T(2) * (ad + bc);  R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab);  // NOLINT
 | |
|   R(2, 0) = T(2) * (bd - ac);  R(2, 1) = T(2) * (ab + cd);  R(2, 2) = aa - bb - cc + dd; // NOLINT
 | |
| }
 | |
| 
 | |
| template <typename T> inline
 | |
| void QuaternionToRotation(const T q[4], T R[3 * 3]) {
 | |
|   QuaternionToRotation(q, RowMajorAdapter3x3(R));
 | |
| }
 | |
| 
 | |
| template <typename T, int row_stride, int col_stride> inline
 | |
| void QuaternionToRotation(const T q[4],
 | |
|                           const MatrixAdapter<T, row_stride, col_stride>& R) {
 | |
|   QuaternionToScaledRotation(q, R);
 | |
| 
 | |
|   T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
 | |
|   CHECK_NE(normalizer, T(0));
 | |
|   normalizer = T(1) / normalizer;
 | |
| 
 | |
|   for (int i = 0; i < 3; ++i) {
 | |
|     for (int j = 0; j < 3; ++j) {
 | |
|       R(i, j) *= normalizer;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T> inline
 | |
| void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
 | |
|   const T t2 =  q[0] * q[1];
 | |
|   const T t3 =  q[0] * q[2];
 | |
|   const T t4 =  q[0] * q[3];
 | |
|   const T t5 = -q[1] * q[1];
 | |
|   const T t6 =  q[1] * q[2];
 | |
|   const T t7 =  q[1] * q[3];
 | |
|   const T t8 = -q[2] * q[2];
 | |
|   const T t9 =  q[2] * q[3];
 | |
|   const T t1 = -q[3] * q[3];
 | |
|   result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0];  // NOLINT
 | |
|   result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1];  // NOLINT
 | |
|   result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2];  // NOLINT
 | |
| }
 | |
| 
 | |
| template <typename T> inline
 | |
| void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
 | |
|   // 'scale' is 1 / norm(q).
 | |
|   const T scale = T(1) / sqrt(q[0] * q[0] +
 | |
|                               q[1] * q[1] +
 | |
|                               q[2] * q[2] +
 | |
|                               q[3] * q[3]);
 | |
| 
 | |
|   // Make unit-norm version of q.
 | |
|   const T unit[4] = {
 | |
|     scale * q[0],
 | |
|     scale * q[1],
 | |
|     scale * q[2],
 | |
|     scale * q[3],
 | |
|   };
 | |
| 
 | |
|   UnitQuaternionRotatePoint(unit, pt, result);
 | |
| }
 | |
| 
 | |
| template<typename T> inline
 | |
| void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
 | |
|   zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
 | |
|   zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
 | |
|   zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
 | |
|   zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
 | |
| }
 | |
| 
 | |
| // xy = x cross y;
 | |
| template<typename T> inline
 | |
| void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
 | |
|   x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
 | |
|   x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
 | |
|   x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
 | |
| }
 | |
| 
 | |
| template<typename T> inline
 | |
| T DotProduct(const T x[3], const T y[3]) {
 | |
|   return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
 | |
| }
 | |
| 
 | |
| template<typename T> inline
 | |
| void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
 | |
|   const T theta2 = DotProduct(angle_axis, angle_axis);
 | |
|   if (theta2 > T(std::numeric_limits<double>::epsilon())) {
 | |
|     // Away from zero, use the rodriguez formula
 | |
|     //
 | |
|     //   result = pt costheta +
 | |
|     //            (w x pt) * sintheta +
 | |
|     //            w (w . pt) (1 - costheta)
 | |
|     //
 | |
|     // We want to be careful to only evaluate the square root if the
 | |
|     // norm of the angle_axis vector is greater than zero. Otherwise
 | |
|     // we get a division by zero.
 | |
|     //
 | |
|     const T theta = sqrt(theta2);
 | |
|     const T costheta = cos(theta);
 | |
|     const T sintheta = sin(theta);
 | |
|     const T theta_inverse = 1.0 / theta;
 | |
| 
 | |
|     const T w[3] = { angle_axis[0] * theta_inverse,
 | |
|                      angle_axis[1] * theta_inverse,
 | |
|                      angle_axis[2] * theta_inverse };
 | |
| 
 | |
|     // Explicitly inlined evaluation of the cross product for
 | |
|     // performance reasons.
 | |
|     const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
 | |
|                               w[2] * pt[0] - w[0] * pt[2],
 | |
|                               w[0] * pt[1] - w[1] * pt[0] };
 | |
|     const T tmp =
 | |
|         (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);
 | |
| 
 | |
|     result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
 | |
|     result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
 | |
|     result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
 | |
|   } else {
 | |
|     // Near zero, the first order Taylor approximation of the rotation
 | |
|     // matrix R corresponding to a vector w and angle w is
 | |
|     //
 | |
|     //   R = I + hat(w) * sin(theta)
 | |
|     //
 | |
|     // But sintheta ~ theta and theta * w = angle_axis, which gives us
 | |
|     //
 | |
|     //  R = I + hat(w)
 | |
|     //
 | |
|     // and actually performing multiplication with the point pt, gives us
 | |
|     // R * pt = pt + w x pt.
 | |
|     //
 | |
|     // Switching to the Taylor expansion near zero provides meaningful
 | |
|     // derivatives when evaluated using Jets.
 | |
|     //
 | |
|     // Explicitly inlined evaluation of the cross product for
 | |
|     // performance reasons.
 | |
|     const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
 | |
|                               angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
 | |
|                               angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };
 | |
| 
 | |
|     result[0] = pt[0] + w_cross_pt[0];
 | |
|     result[1] = pt[1] + w_cross_pt[1];
 | |
|     result[2] = pt[2] + w_cross_pt[2];
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace ceres
 | |
| 
 | |
| #endif  // CERES_PUBLIC_ROTATION_H_
 |