91 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
/*
 | 
						|
 * CSP.h
 | 
						|
 * @brief Constraint Satisfaction Problem class
 | 
						|
 * @date Feb 6, 2012
 | 
						|
 * @author Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam_unstable/discrete/AllDiff.h>
 | 
						|
#include <gtsam_unstable/discrete/SingleValue.h>
 | 
						|
#include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
  /**
 | 
						|
   * Constraint Satisfaction Problem class
 | 
						|
   * A specialization of a DiscreteFactorGraph.
 | 
						|
   * It knows about CSP-specific constraints and algorithms
 | 
						|
   */
 | 
						|
  class GTSAM_UNSTABLE_EXPORT CSP: public DiscreteFactorGraph {
 | 
						|
  public:
 | 
						|
 | 
						|
    /** A map from keys to values */
 | 
						|
    typedef KeyVector Indices;
 | 
						|
    typedef Assignment<Key> Values;
 | 
						|
    typedef boost::shared_ptr<Values> sharedValues;
 | 
						|
 | 
						|
  public:
 | 
						|
 | 
						|
//    /// Constructor
 | 
						|
//    CSP() {
 | 
						|
//    }
 | 
						|
 | 
						|
    /// Add a unary constraint, allowing only a single value
 | 
						|
    void addSingleValue(const DiscreteKey& dkey, size_t value) {
 | 
						|
      boost::shared_ptr<SingleValue> factor(new SingleValue(dkey, value));
 | 
						|
      push_back(factor);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Add a binary AllDiff constraint
 | 
						|
    void addAllDiff(const DiscreteKey& key1, const DiscreteKey& key2) {
 | 
						|
      boost::shared_ptr<BinaryAllDiff> factor(
 | 
						|
          new BinaryAllDiff(key1, key2));
 | 
						|
      push_back(factor);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Add a general AllDiff constraint
 | 
						|
    void addAllDiff(const DiscreteKeys& dkeys) {
 | 
						|
      boost::shared_ptr<AllDiff> factor(new AllDiff(dkeys));
 | 
						|
      push_back(factor);
 | 
						|
    }
 | 
						|
 | 
						|
//    /** return product of all factors as a single factor */
 | 
						|
//    DecisionTreeFactor product() const {
 | 
						|
//      DecisionTreeFactor result;
 | 
						|
//      for(const sharedFactor& factor: *this)
 | 
						|
//        if (factor) result = (*factor) * result;
 | 
						|
//      return result;
 | 
						|
//    }
 | 
						|
 | 
						|
    /// Find the best total assignment - can be expensive
 | 
						|
    sharedValues optimalAssignment() const;
 | 
						|
 | 
						|
    /// Find the best total assignment - can be expensive
 | 
						|
    sharedValues optimalAssignment(const Ordering& ordering) const;
 | 
						|
 | 
						|
//    /*
 | 
						|
//     * Perform loopy belief propagation
 | 
						|
//     * True belief propagation would check for each value in domain
 | 
						|
//     * whether any satisfying separator assignment can be found.
 | 
						|
//     * This corresponds to hyper-arc consistency in CSP speak.
 | 
						|
//     * This can be done by creating a mini-factor graph and search.
 | 
						|
//     * For a nine-by-nine Sudoku, the search tree will be 8+6+6=20 levels deep.
 | 
						|
//     * It will be very expensive to exclude values that way.
 | 
						|
//     */
 | 
						|
//     void applyBeliefPropagation(size_t nrIterations = 10) const;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Apply arc-consistency ~ Approximate loopy belief propagation
 | 
						|
     * We need to give the domains to a constraint, and it returns
 | 
						|
     * a domain whose values don't conflict in the arc-consistency way.
 | 
						|
     * TODO: should get cardinality from Indices
 | 
						|
     */
 | 
						|
    void runArcConsistency(size_t cardinality, size_t nrIterations = 10,
 | 
						|
        bool print = false) const;
 | 
						|
  }; // CSP
 | 
						|
 | 
						|
} // gtsam
 | 
						|
 |