125 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file   testSubgraphSolver.cpp
 | |
|  *  @brief  Unit tests for SubgraphSolver
 | |
|  *  @author Yong-Dian Jian
 | |
|  **/
 | |
| 
 | |
| #include <gtsam/linear/SubgraphSolver.h>
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| #include <gtsam/linear/GaussianBayesNet.h>
 | |
| #include <gtsam/linear/iterative.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam/linear/SubgraphBuilder.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/inference/Ordering.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| static size_t N = 3;
 | |
| static SubgraphSolverParameters kParameters;
 | |
| static auto kOrdering = example::planarOrdering(N);
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** unnormalized error */
 | |
| static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
 | |
|   double total_error = 0.;
 | |
|   for(const GaussianFactor::shared_ptr& factor: fg)
 | |
|     total_error += factor->error(x);
 | |
|   return total_error;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphSolver, Parameters )
 | |
| {
 | |
|   LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity());
 | |
|   LONGS_EQUAL(500, kParameters.maxIterations());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphSolver, splitFactorGraph )
 | |
| {
 | |
|   // Build a planar graph
 | |
|   const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | |
| 
 | |
|   SubgraphBuilderParameters params;
 | |
|   params.augmentationFactor = 0.0;
 | |
|   SubgraphBuilder builder(params);
 | |
|   auto subgraph = builder(Ab);
 | |
|   EXPECT_LONGS_EQUAL(9, subgraph.size());
 | |
| 
 | |
|   const auto [Ab1, Ab2] = splitFactorGraph(Ab, subgraph);
 | |
|   EXPECT_LONGS_EQUAL(9, Ab1.size());
 | |
|   EXPECT_LONGS_EQUAL(13, Ab2.size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphSolver, constructor1 )
 | |
| {
 | |
|   // Build a planar graph
 | |
|   const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | |
| 
 | |
|   // The first constructor just takes a factor graph (and kParameters)
 | |
|   // and it will split the graph into A1 and A2, where A1 is a spanning tree
 | |
|   SubgraphSolver solver(Ab, kParameters, kOrdering);
 | |
|   VectorValues optimized = solver.optimize(); // does PCG optimization
 | |
|   DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphSolver, constructor2 )
 | |
| {
 | |
|   // Build a planar graph
 | |
|   size_t N = 3;
 | |
|   const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | |
| 
 | |
|   // Get the spanning tree, A1*x-b1 and A2*x-b2
 | |
|   const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, Ab);
 | |
| 
 | |
|   // The second constructor takes two factor graphs, so the caller can specify
 | |
|   // the preconditioner (Ab1) and the constraints that are left out (Ab2)
 | |
|   SubgraphSolver solver(Ab1, Ab2, kParameters, kOrdering);
 | |
|   VectorValues optimized = solver.optimize();
 | |
|   DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphSolver, constructor3 )
 | |
| {
 | |
|   // Build a planar graph
 | |
|   size_t N = 3;
 | |
|   const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | |
| 
 | |
|   // Get the spanning tree and corresponding kOrdering
 | |
|   // A1*x-b1 and A2*x-b2
 | |
|   const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, Ab);
 | |
| 
 | |
|   // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT
 | |
|   auto Rc1 = *Ab1.eliminateSequential();
 | |
| 
 | |
|   // The third constructor allows the caller to pass an already solved preconditioner Rc1_
 | |
|   // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before
 | |
|   SubgraphSolver solver(Rc1, Ab2, kParameters);
 | |
|   VectorValues optimized = solver.optimize();
 | |
|   DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |