120 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file	DiscreteBayesNet_FG.cpp
 | |
|  * @brief 	Discrete Bayes Net example using Factor Graphs
 | |
|  * @author	Abhijit
 | |
|  * @date	Jun 4, 2012
 | |
|  *
 | |
|  * We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, p529]
 | |
|  * You may be familiar with other graphical model packages like BNT (available
 | |
|  * at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this is used as an
 | |
|  * example. The following demo is same as that in the above link, except that
 | |
|  * everything is using GTSAM.
 | |
|  */
 | |
| 
 | |
| #include <gtsam/discrete/DiscreteFactorGraph.h>
 | |
| #include <gtsam/discrete/DiscreteSequentialSolver.h>
 | |
| #include <iomanip>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char **argv) {
 | |
| 
 | |
| 	// We assume binary state variables
 | |
| 	// we have 0 == "False" and 1 == "True"
 | |
| 	const size_t nrStates = 2;
 | |
| 
 | |
| 	// define variables
 | |
| 	DiscreteKey Cloudy(1, nrStates), Sprinkler(2, nrStates), Rain(3, nrStates),
 | |
| 			WetGrass(4, nrStates);
 | |
| 
 | |
| 	// create Factor Graph of the bayes net
 | |
| 	DiscreteFactorGraph graph;
 | |
| 
 | |
| 	// add factors
 | |
| 	graph.add(Cloudy, "0.5 0.5"); //P(Cloudy)
 | |
| 	graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); //P(Sprinkler | Cloudy)
 | |
| 	graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); //P(Rain | Cloudy)
 | |
| 	graph.add(Sprinkler & Rain & WetGrass,
 | |
| 			"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); //P(WetGrass | Sprinkler, Rain)
 | |
| 
 | |
| 	// Alternatively we can also create a DiscreteBayesNet, add DiscreteConditional
 | |
| 	// factors and create a FactorGraph from it. (See testDiscreteBayesNet.cpp)
 | |
| 
 | |
| 	// Since this is a relatively small distribution, we can as well print
 | |
| 	// the whole distribution..
 | |
| 	cout << "Distribution of Example: " << endl;
 | |
| 	cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10)
 | |
| 			<< "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
 | |
| 			<< endl;
 | |
| 	for (size_t a = 0; a < nrStates; a++)
 | |
| 		for (size_t m = 0; m < nrStates; m++)
 | |
| 			for (size_t h = 0; h < nrStates; h++)
 | |
| 				for (size_t c = 0; c < nrStates; c++) {
 | |
| 					DiscreteFactor::Values values;
 | |
| 					values[Cloudy.first] = c;
 | |
| 					values[Sprinkler.first] = h;
 | |
| 					values[Rain.first] = m;
 | |
| 					values[WetGrass.first] = a;
 | |
| 					double prodPot = graph(values);
 | |
| 					cout << boolalpha << setw(8) << (bool) c << setw(14)
 | |
| 							<< (bool) h << setw(12) << (bool) m << setw(13)
 | |
| 							<< (bool) a << setw(16) << prodPot << endl;
 | |
| 				}
 | |
| 
 | |
| 
 | |
| 	// "Most Probable Explanation", i.e., configuration with largest value
 | |
| 	DiscreteSequentialSolver solver(graph);
 | |
| 	DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
 | |
| 	cout <<"\nMost Probable Explanation (MPE):" << endl;
 | |
| 	cout << boolalpha << "Cloudy = " << (bool)(*optimalDecoding)[Cloudy.first]
 | |
| 	                << "  Sprinkler = " << (bool)(*optimalDecoding)[Sprinkler.first]
 | |
| 	                << "  Rain = " << boolalpha << (bool)(*optimalDecoding)[Rain.first]
 | |
| 	                << "  WetGrass = " << (bool)(*optimalDecoding)[WetGrass.first]<< endl;
 | |
| 
 | |
| 
 | |
| 	// "Inference" We show an inference query like: probability that the Sprinkler was on;
 | |
| 	// given that the grass is wet i.e. P( S | W=1) =?
 | |
| 	cout << "\nInference Query: Probability of Sprinkler being on given Grass is Wet" << endl;
 | |
| 
 | |
| 	// Method 1: we can compute the joint marginal P(S,W) and from that we can compute
 | |
| 	// P(S | W=1) = P(S,W=1)/P(W=1) We do this in following three steps..
 | |
| 
 | |
| 	//Step1: Compute P(S,W)
 | |
| 	DiscreteFactorGraph jointFG;
 | |
| 	jointFG = *solver.jointFactorGraph(DiscreteKeys(Sprinkler & WetGrass).indices());
 | |
| 	DecisionTreeFactor probSW = jointFG.product();
 | |
| 
 | |
| 	//Step2: Compute P(W)
 | |
| 	DecisionTreeFactor probW = *solver.marginalFactor(WetGrass.first);
 | |
| 
 | |
| 	//Step3: Computer P(S | W=1) = P(S,W=1)/P(W=1)
 | |
| 	DiscreteFactor::Values values;
 | |
| 	values[WetGrass.first] = 1;
 | |
| 
 | |
| 	//print P(S=0|W=1)
 | |
| 	values[Sprinkler.first] = 0;
 | |
| 	cout << "P(S=0|W=1) = " << probSW(values)/probW(values) << endl;
 | |
| 
 | |
| 	//print P(S=1|W=1)
 | |
| 	values[Sprinkler.first] = 1;
 | |
| 	cout << "P(S=1|W=1) = " << probSW(values)/probW(values) << endl;
 | |
| 
 | |
| 	// TODO: Method 2 : One way is to modify the factor graph to
 | |
| 	// incorporate the evidence node and compute the marginal
 | |
| 	// TODO: graph.addEvidence(Cloudy,0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |