gtsam/gtsam/navigation/PreintegrationBase.h

412 lines
17 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file PreintegrationBase.h
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
* @author Vadim Indelman
* @author David Jensen
* @author Frank Dellaert
**/
#pragma once
#include <gtsam/navigation/PreintegratedRotation.h>
#include <gtsam/navigation/ImuBias.h>
namespace gtsam {
/**
* Struct to hold all state variables of returned by Predict function
*/
struct PoseVelocityBias {
Pose3 pose;
Vector3 velocity;
imuBias::ConstantBias bias;
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
const imuBias::ConstantBias _bias) :
pose(_pose), velocity(_velocity), bias(_bias) {
}
};
/**
* PreintegrationBase is the base class for PreintegratedMeasurements
* (in ImuFactor) and CombinedPreintegratedMeasurements (in CombinedImuFactor).
* It includes the definitions of the preintegrated variables and the methods
* to access, print, and compare them.
*/
class PreintegrationBase : public PreintegratedRotation {
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
bool use2ndOrderIntegration_; ///< Controls the order of integration
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
public:
/**
* Default constructor, initializes the variables in the base class
* @param bias Current estimate of acceleration and rotation rate biases
* @param use2ndOrderIntegration Controls the order of integration
* (if false: p(t+1) = p(t) + v(t) deltaT ; if true: p(t+1) = p(t) + v(t) deltaT + 0.5 * acc(t) deltaT^2)
*/
PreintegrationBase(const imuBias::ConstantBias& bias, const bool use2ndOrderIntegration) :
biasHat_(bias), use2ndOrderIntegration_(use2ndOrderIntegration),
deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3) {}
/// methods to access class variables
const Vector3& deltaPij() const {return deltaPij_;}
const Vector3& deltaVij() const {return deltaVij_;}
const imuBias::ConstantBias& biasHat() const { return biasHat_;}
Vector biasHatVector() const { return biasHat_.vector();} // expensive
const Matrix3& delPdelBiasAcc() const { return delPdelBiasAcc_;}
const Matrix3& delPdelBiasOmega() const { return delPdelBiasOmega_;}
const Matrix3& delVdelBiasAcc() const { return delVdelBiasAcc_;}
const Matrix3& delVdelBiasOmega() const { return delVdelBiasOmega_;}
/// Needed for testable
void print(const std::string& s) const {
PreintegratedRotation::print(s);
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
biasHat_.print(" biasHat");
}
/// Needed for testable
bool equals(const PreintegrationBase& expected, double tol) const {
return PreintegratedRotation::equals(expected, tol)
&& biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol);
}
/// Re-initialize PreintegratedMeasurements
void resetIntegration(){
PreintegratedRotation::resetIntegration();
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
delPdelBiasAcc_ = Z_3x3;
delPdelBiasOmega_ = Z_3x3;
delVdelBiasAcc_ = Z_3x3;
delVdelBiasOmega_ = Z_3x3;
}
/// Update preintegrated measurements
void updatePreintegratedMeasurements(const Vector3& correctedAcc,
const Rot3& incrR, const double deltaT) {
Matrix3 dRij = deltaRij(); // expensive
Vector3 temp = dRij * correctedAcc * deltaT;
if(!use2ndOrderIntegration_){
deltaPij_ += deltaVij_ * deltaT;
}else{
deltaPij_ += deltaVij_ * deltaT + 0.5 * temp * deltaT;
}
deltaVij_ += temp;
// TODO: we update rotation *after* the others. Is that correct?
updateIntegratedRotationAndDeltaT(incrR,deltaT);
}
/// Update Jacobians to be used during preintegration
void updatePreintegratedJacobians(const Vector3& correctedAcc,
const Matrix3& Jr_theta_incr, const Rot3& incrR, double deltaT){
Matrix3 dRij = deltaRij(); // expensive
Matrix3 temp = -dRij * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega();
if (!use2ndOrderIntegration_) {
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
} else {
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * dRij * deltaT * deltaT;
delPdelBiasOmega_ += deltaT*(delVdelBiasOmega_ + temp * 0.5);
}
delVdelBiasAcc_ += -dRij * deltaT;
delVdelBiasOmega_ += temp;
// TODO: we update rotation *after* the others. Is that correct?
update_delRdelBiasOmega(Jr_theta_incr,incrR,deltaT);
}
void correctMeasurementsByBiasAndSensorPose(const Vector3& measuredAcc,
const Vector3& measuredOmega, Vector3& correctedAcc,
Vector3& correctedOmega, boost::optional<const Pose3&> body_P_sensor) {
correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities
// (originally in the IMU frame) into the body frame
if(body_P_sensor){
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
}
/// Predict state at time j
//------------------------------------------------------------------------------
PoseVelocityBias predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias_i, const Vector3& gravity,
const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false) const {
const Vector3 biasAccIncr = bias_i.accelerometer() - biasHat().accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
const Rot3& Rot_i = pose_i.rotation();
const Vector3& pos_i = pose_i.translation().vector();
const Matrix3 omegaCoriolisHat = skewSymmetric(omegaCoriolis);
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (deltaPij()
+ delPdelBiasAcc() * biasAccIncr
+ delPdelBiasOmega() * biasOmegaIncr)
+ vel_i * deltaTij()
- omegaCoriolisHat * vel_i * deltaTij()*deltaTij() // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij()*deltaTij();
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (deltaVij()
+ delVdelBiasAcc() * biasAccIncr
+ delVdelBiasOmega() * biasOmegaIncr)
- 2 * omegaCoriolisHat * vel_i * deltaTij() // Coriolis term
+ gravity * deltaTij());
if(use2ndOrderCoriolis){
pos_j += - 0.5 * omegaCoriolisHat * omegaCoriolisHat * pos_i * deltaTij()*deltaTij(); // 2nd order coriolis term for position
vel_j += - omegaCoriolisHat * omegaCoriolisHat * pos_i * deltaTij(); // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = biascorrectedDeltaRij(biasOmegaIncr);
// deltaRij_biascorrected = deltaRij * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_corrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij(); // Coriolis term
const Rot3 deltaRij_corrected =
Rot3::Expmap( theta_corrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_corrected );
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
return PoseVelocityBias(pose_j, vel_j, bias_i); // bias is predicted as a constant
}
/// Compute errors w.r.t. preintegrated measurements and jacobians wrt pose_i, vel_i, bias_i, pose_j, bias_j
//------------------------------------------------------------------------------
Vector computeErrorAndJacobians(const Pose3& pose_i, const Vector3& vel_i,
const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias_i, const Vector3& gravity,
const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
boost::optional<Matrix&> H5) const {
// We need the mismatch w.r.t. the biases used for preintegration
const Vector3 biasAccIncr = bias_i.accelerometer() - biasHat().accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
// we give some shorter name to rotations and translations
const Rot3& Ri = pose_i.rotation();
const Rot3& Rj = pose_j.rotation();
const Vector3& pos_j = pose_j.translation().vector();
// Jacobian computation
/* ---------------------------------------------------------------------------------------------------- */
// Get Get so<3> version of bias corrected rotation
// If H5 is asked for, we will need the Jacobian, which we store in H5
// H5 will then be corrected below to take into account the Coriolis effect
Vector3 theta_biascorrected = biascorrectedThetaRij(biasOmegaIncr, H5);
// Coriolis term, note inconsistent with AHRS, where coriolisHat is *after* integration
const Matrix3 omegaCoriolisHat = skewSymmetric(omegaCoriolis);
const Vector3 coriolis = integrateCoriolis(Ri, omegaCoriolis);
Vector3 theta_corrected = theta_biascorrected - coriolis;
// Prediction
const Rot3 deltaRij_corrected = Rot3::Expmap( theta_corrected );
// TODO: these are not always needed
const Rot3 fRhat = deltaRij_corrected.between(Ri.between(Rj));
const Matrix3 Jr_theta_bcc = Rot3::rightJacobianExpMapSO3(theta_corrected);
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(coriolis);
const Matrix3 Jrinv_fRhat = Rot3::rightJacobianExpMapSO3inverse(Rot3::Logmap(fRhat));
if(H1) {
H1->resize(9,6);
Matrix3 dfPdPi;
Matrix3 dfVdPi;
if(use2ndOrderCoriolis){
dfPdPi = - Ri.matrix() + 0.5 * omegaCoriolisHat * omegaCoriolisHat * Ri.matrix() * deltaTij()*deltaTij();
dfVdPi = omegaCoriolisHat * omegaCoriolisHat * Ri.matrix() * deltaTij();
}
else{
dfPdPi = - Ri.matrix();
dfVdPi = Z_3x3;
}
(*H1) <<
// dfP/dRi
Ri.matrix() * skewSymmetric(deltaPij()
+ delPdelBiasOmega() * biasOmegaIncr + delPdelBiasAcc() * biasAccIncr),
// dfP/dPi
dfPdPi,
// dfV/dRi
Ri.matrix() * skewSymmetric(deltaVij()
+ delVdelBiasOmega() * biasOmegaIncr + delVdelBiasAcc() * biasAccIncr),
// dfV/dPi
dfVdPi,
// dfR/dRi
Jrinv_fRhat * (- Rj.between(Ri).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Z_3x3;
}
if(H2) {
H2->resize(9,3);
(*H2) <<
// dfP/dVi
- I_3x3 * deltaTij()
+ omegaCoriolisHat * deltaTij() * deltaTij(), // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- I_3x3
+ 2 * omegaCoriolisHat * deltaTij(), // Coriolis term
// dfR/dVi
Z_3x3;
}
if(H3) {
H3->resize(9,6);
(*H3) <<
// dfP/dPosej
Z_3x3, Rj.matrix(),
// dfV/dPosej
Matrix::Zero(3,6),
// dfR/dPosej
Jrinv_fRhat * ( I_3x3 ), Z_3x3;
}
if(H4) {
H4->resize(9,3);
(*H4) <<
// dfP/dVj
Z_3x3,
// dfV/dVj
I_3x3,
// dfR/dVj
Z_3x3;
}
if(H5) {
// H5 by this point already contains 3*3 biascorrectedThetaRij derivative
const Matrix3 JbiasOmega = Jr_theta_bcc * (*H5);
H5->resize(9,6);
(*H5) <<
// dfP/dBias
- Ri.matrix() * delPdelBiasAcc(),
- Ri.matrix() * delPdelBiasOmega(),
// dfV/dBias
- Ri.matrix() * delVdelBiasAcc(),
- Ri.matrix() * delVdelBiasOmega(),
// dfR/dBias
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega);
}
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
PoseVelocityBias predictedState_j = predict(pose_i, vel_i, bias_i, gravity,
omegaCoriolis, use2ndOrderCoriolis);
const Vector3 fp = pos_j - predictedState_j.pose.translation().vector();
const Vector3 fv = vel_j - predictedState_j.velocity;
// This is the same as: dR = (predictedState_j.pose.translation()).between(Rot_j)
const Vector3 fR = Rot3::Logmap(fRhat);
Vector r(9); r << fp, fv, fR;
return r;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
// Note: all delta terms refer to an IMU\sensor system at t0
Vector body_t_a_body = msr_acc_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
}
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegratedRotation);
ar & BOOST_SERIALIZATION_NVP(biasHat_);
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
}
};
class ImuBase {
protected:
Vector3 gravity_;
Vector3 omegaCoriolis_;
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
public:
ImuBase() :
gravity_(Vector3(0.0,0.0,9.81)), omegaCoriolis_(Vector3(0.0,0.0,0.0)),
body_P_sensor_(boost::none), use2ndOrderCoriolis_(false) {}
ImuBase(const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false) :
gravity_(gravity), omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor), use2ndOrderCoriolis_(use2ndOrderCoriolis) {}
const Vector3& gravity() const { return gravity_; }
const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
};
} /// namespace gtsam