160 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    timeFactorOverhead.cpp
 | 
						|
 * @brief   Compares times of solving large single-factor graphs with their multi-factor equivalents.
 | 
						|
 * @author  Richard Roberts
 | 
						|
 * @date    Aug 20, 2010
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/base/timing.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/linear/NoiseModel.h>
 | 
						|
#include <gtsam/linear/VectorValues.h>
 | 
						|
 | 
						|
#include <random>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace gtsam;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
static std::mt19937 rng;
 | 
						|
static std::uniform_real_distribution<> uniform(0.0, 1.0);
 | 
						|
 | 
						|
int main(int argc, char *argv[]) {
 | 
						|
 | 
						|
  Key key = 0;
 | 
						|
 | 
						|
  size_t vardim = 2;
 | 
						|
  size_t blockdim = 1;
 | 
						|
  size_t nBlocks = 4000;
 | 
						|
 | 
						|
  size_t nTrials = 20;
 | 
						|
 | 
						|
  double blockbuild, blocksolve, combbuild, combsolve;
 | 
						|
 | 
						|
  cout << "\n1 variable of dimension " << vardim << ", " <<
 | 
						|
      nBlocks << " blocks of dimension " << blockdim << "\n";
 | 
						|
  cout << nTrials << " trials\n";
 | 
						|
 | 
						|
  /////////////////////////////////////////////////////////////////////////////
 | 
						|
  // Timing test with blockwise Gaussian factor graphs
 | 
						|
 | 
						|
  {
 | 
						|
    // Build GFG's
 | 
						|
    cout << "Building blockwise Gaussian factor graphs... ";
 | 
						|
    cout.flush();
 | 
						|
    gttic_(blockbuild);
 | 
						|
    vector<GaussianFactorGraph> blockGfgs;
 | 
						|
    blockGfgs.reserve(nTrials);
 | 
						|
    for(size_t trial=0; trial<nTrials; ++trial) {
 | 
						|
      blockGfgs.push_back(GaussianFactorGraph());
 | 
						|
      SharedDiagonal noise = noiseModel::Isotropic::Sigma(blockdim, 1.0);
 | 
						|
      for(size_t i=0; i<nBlocks; ++i) {
 | 
						|
        // Generate a random Gaussian factor
 | 
						|
        Matrix A(blockdim, vardim);
 | 
						|
        for(size_t j=0; j<blockdim; ++j)
 | 
						|
          for(size_t k=0; k<vardim; ++k)
 | 
						|
            A(j,k) = uniform(rng);
 | 
						|
        Vector b(blockdim);
 | 
						|
        for(size_t j=0; j<blockdim; ++j)
 | 
						|
          b(j) = uniform(rng);
 | 
						|
        blockGfgs[trial].push_back(std::make_shared<JacobianFactor>(key, A, b, noise));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    gttoc_(blockbuild);
 | 
						|
    tictoc_getNode(blockbuildNode, blockbuild);
 | 
						|
    blockbuild = blockbuildNode->secs();
 | 
						|
    cout << blockbuild << " s" << endl;
 | 
						|
 | 
						|
    // Solve GFG's
 | 
						|
    cout << "Solving blockwise Gaussian factor graphs... ";
 | 
						|
    cout.flush();
 | 
						|
    gttic_(blocksolve);
 | 
						|
    for(size_t trial=0; trial<nTrials; ++trial) {
 | 
						|
//      cout << "Trial " << trial << endl;
 | 
						|
      GaussianBayesNet::shared_ptr gbn = blockGfgs[trial].eliminateSequential();
 | 
						|
      VectorValues soln = gbn->optimize();
 | 
						|
    }
 | 
						|
    gttoc_(blocksolve);
 | 
						|
    tictoc_getNode(blocksolveNode, blocksolve);
 | 
						|
    blocksolve = blocksolveNode->secs();
 | 
						|
    cout << blocksolve << " s" << endl;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /////////////////////////////////////////////////////////////////////////////
 | 
						|
  // Timing test with combined-factor Gaussian factor graphs
 | 
						|
 | 
						|
  {
 | 
						|
    // Build GFG's
 | 
						|
    cout << "Building combined-factor Gaussian factor graphs... ";
 | 
						|
    cout.flush();
 | 
						|
    gttic_(combbuild);
 | 
						|
    vector<GaussianFactorGraph> combGfgs;
 | 
						|
    for(size_t trial=0; trial<nTrials; ++trial) {
 | 
						|
      combGfgs.push_back(GaussianFactorGraph());
 | 
						|
      SharedDiagonal noise = noiseModel::Isotropic::Sigma(blockdim, 1.0);
 | 
						|
 | 
						|
      Matrix Acomb(blockdim*nBlocks, vardim);
 | 
						|
      Vector bcomb(blockdim*nBlocks);
 | 
						|
      for(size_t i=0; i<nBlocks; ++i) {
 | 
						|
        // Generate a random Gaussian factor
 | 
						|
        for(size_t j=0; j<blockdim; ++j)
 | 
						|
          for(size_t k=0; k<vardim; ++k)
 | 
						|
            Acomb(blockdim*i+j, k) = uniform(rng);
 | 
						|
        Vector b(blockdim);
 | 
						|
        for(size_t j=0; j<blockdim; ++j)
 | 
						|
          bcomb(blockdim*i+j) = uniform(rng);
 | 
						|
      }
 | 
						|
      combGfgs[trial].push_back(std::make_shared<JacobianFactor>(key, Acomb, bcomb,
 | 
						|
          noiseModel::Isotropic::Sigma(blockdim*nBlocks, 1.0)));
 | 
						|
    }
 | 
						|
    gttoc(combbuild);
 | 
						|
    tictoc_getNode(combbuildNode, combbuild);
 | 
						|
    combbuild = combbuildNode->secs();
 | 
						|
    cout << combbuild << " s" << endl;
 | 
						|
 | 
						|
    // Solve GFG's
 | 
						|
    cout << "Solving combined-factor Gaussian factor graphs... ";
 | 
						|
    cout.flush();
 | 
						|
    gttic_(combsolve);
 | 
						|
    for(size_t trial=0; trial<nTrials; ++trial) {
 | 
						|
      GaussianBayesNet::shared_ptr gbn = combGfgs[trial].eliminateSequential();
 | 
						|
      VectorValues soln = gbn->optimize();
 | 
						|
    }
 | 
						|
    gttoc_(combsolve);
 | 
						|
    tictoc_getNode(combsolveNode, combsolve);
 | 
						|
    combsolve = combsolveNode->secs();
 | 
						|
    cout << combsolve << " s" << endl;
 | 
						|
  }
 | 
						|
 | 
						|
  /////////////////////////////////////////////////////////////////////////////
 | 
						|
  // Print per-graph times
 | 
						|
  cout << "\nPer-factor-graph times for building and solving\n";
 | 
						|
  cout << "Blockwise:  total " << (1000.0*(blockbuild+blocksolve)/double(nTrials)) <<
 | 
						|
      "  build " << (1000.0*blockbuild/double(nTrials)) <<
 | 
						|
      "  solve " << (1000.0*blocksolve/double(nTrials)) << " ms/graph\n";
 | 
						|
  cout << "Combined:   total " << (1000.0*(combbuild+combsolve)/double(nTrials)) <<
 | 
						|
      "  build " << (1000.0*combbuild/double(nTrials)) <<
 | 
						|
      "  solve " << (1000.0*combsolve/double(nTrials)) << " ms/graph\n";
 | 
						|
  cout << "Fraction of time spent in overhead\n" <<
 | 
						|
      "  total " << (((blockbuild+blocksolve)-(combbuild+combsolve)) / (blockbuild+blocksolve)) << "\n" <<
 | 
						|
      "  build " << ((blockbuild-combbuild) / blockbuild) << "\n" <<
 | 
						|
      "  solve " << ((blocksolve-combsolve) / blocksolve) << "\n";
 | 
						|
  cout << endl;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 |