195 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  testProjectionFactorPPPC.cpp
 | |
|  *  @brief Unit tests for Pose+Transform+Calibration ProjectionFactor Class
 | |
|  *  @author Chris Beall
 | |
|  *  @date Jul 29, 2014
 | |
|  */
 | |
| 
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| #include <gtsam/base/TestableAssertions.h>
 | |
| #include <gtsam_unstable/slam/ProjectionFactorPPPC.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/geometry/Cal3DS2.h>
 | |
| #include <gtsam/geometry/Cal3_S2.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/geometry/Point3.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| using namespace std::placeholders;
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // make a realistic calibration matrix
 | |
| static double fov = 60; // degrees
 | |
| static size_t w=640,h=480;
 | |
| static Cal3_S2::shared_ptr K1(new Cal3_S2(fov,w,h));
 | |
| 
 | |
| // Create a noise model for the pixel error
 | |
| static SharedNoiseModel model(noiseModel::Unit::Create(2));
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| using symbol_shorthand::T;
 | |
| using symbol_shorthand::K;
 | |
| 
 | |
| typedef ProjectionFactorPPPC<Pose3, Point3, Cal3_S2> TestProjectionFactor;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ProjectionFactorPPPC, nonStandard ) {
 | |
|   ProjectionFactorPPPC<Pose3, Point3, Cal3DS2> f;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ProjectionFactorPPPC, Constructor) {
 | |
|   Point2 measurement(323.0, 240.0);
 | |
|   TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1));
 | |
|   // TODO: Actually check something
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ProjectionFactorPPPC, Equals ) {
 | |
|   // Create two identical factors and make sure they're equal
 | |
|   Point2 measurement(323.0, 240.0);
 | |
| 
 | |
|   TestProjectionFactor factor1(measurement, model, X(1), T(1), L(1), K(1));
 | |
|   TestProjectionFactor factor2(measurement, model, X(1), T(1), L(1), K(1));
 | |
| 
 | |
|   CHECK(assert_equal(factor1, factor2));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ProjectionFactorPPPC, Error ) {
 | |
|   // Create the factor with a measurement that is 3 pixels off in x
 | |
|   Point2 measurement(323.0, 240.0);
 | |
|   TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1));
 | |
| 
 | |
|   // Set the linearization point
 | |
|   Pose3 pose(Rot3(), Point3(0,0,-6));
 | |
|   Point3 point(0.0, 0.0, 0.0);
 | |
| 
 | |
|   // Use the factor to calculate the error
 | |
|   Vector actualError(factor.evaluateError(pose, Pose3(), point, *K1));
 | |
| 
 | |
|   // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | |
|   Vector expectedError = Vector2(-3.0, 0.0);
 | |
| 
 | |
|   // Verify we get the expected error
 | |
|   CHECK(assert_equal(expectedError, actualError, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ProjectionFactorPPPC, ErrorWithTransform ) {
 | |
|   // Create the factor with a measurement that is 3 pixels off in x
 | |
|   Point2 measurement(323.0, 240.0);
 | |
|   Pose3 transform(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | |
|   TestProjectionFactor factor(measurement, model, X(1),T(1), L(1), K(1));
 | |
| 
 | |
|   // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
 | |
|   Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
 | |
|   Point3 point(0.0, 0.0, 0.0);
 | |
| 
 | |
|   // Use the factor to calculate the error
 | |
|   Vector actualError(factor.evaluateError(pose, transform, point, *K1));
 | |
| 
 | |
|   // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | |
|   Vector expectedError = Vector2(-3.0, 0.0);
 | |
| 
 | |
|   // Verify we get the expected error
 | |
|   CHECK(assert_equal(expectedError, actualError, 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ProjectionFactorPPPC, Jacobian ) {
 | |
|   // Create the factor with a measurement that is 3 pixels off in x
 | |
|   Point2 measurement(323.0, 240.0);
 | |
|   TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1));
 | |
| 
 | |
|   // Set the linearization point
 | |
|   Pose3 pose(Rot3(), Point3(0,0,-6));
 | |
|   Point3 point(0.0, 0.0, 0.0);
 | |
| 
 | |
|   // Use the factor to calculate the Jacobians
 | |
|   Matrix H1Actual, H2Actual, H3Actual, H4Actual;
 | |
|   factor.evaluateError(pose, Pose3(), point, *K1, H1Actual, H2Actual, H3Actual, H4Actual);
 | |
| 
 | |
|   // The expected Jacobians
 | |
|   Matrix H1Expected = (Matrix(2, 6) << 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.).finished();
 | |
|   Matrix H3Expected = (Matrix(2, 3) << 92.376, 0., 0., 0., 92.376, 0.).finished();
 | |
| 
 | |
|   // Verify the Jacobians are correct
 | |
|   CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
 | |
|   CHECK(assert_equal(H3Expected, H3Actual, 1e-3));
 | |
| 
 | |
|   // Verify H2 and H4 with numerical derivatives
 | |
|   Matrix H2Expected = numericalDerivative11<Vector, Pose3>(
 | |
|       [&factor, &point, &pose](const Pose3& pose_arg) { return factor.evaluateError(pose, pose_arg, point, *K1); },
 | |
|       Pose3());
 | |
| 
 | |
|   Matrix H4Expected = numericalDerivative11<Vector, Cal3_S2>(
 | |
|       [&factor, &point, &pose](const Cal3_S2& K_arg) { return factor.evaluateError(pose, Pose3(), point, K_arg); },
 | |
|       *K1);
 | |
| 
 | |
|   CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
 | |
|   CHECK(assert_equal(H4Expected, H4Actual, 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( ProjectionFactorPPPC, JacobianWithTransform ) {
 | |
|   // Create the factor with a measurement that is 3 pixels off in x
 | |
|   Point2 measurement(323.0, 240.0);
 | |
|   Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | |
|   TestProjectionFactor factor(measurement, model, X(1), T(1), L(1), K(1));
 | |
| 
 | |
|   // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
 | |
|   Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
 | |
|   Point3 point(0.0, 0.0, 0.0);
 | |
| 
 | |
|   // Use the factor to calculate the Jacobians
 | |
|   Matrix H1Actual, H2Actual, H3Actual, H4Actual;
 | |
|   factor.evaluateError(pose, body_P_sensor, point, *K1, H1Actual, H2Actual, H3Actual, H4Actual);
 | |
| 
 | |
|   // The expected Jacobians
 | |
|   Matrix H1Expected = (Matrix(2, 6) << -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376).finished();
 | |
|   Matrix H3Expected = (Matrix(2, 3) << 0., -92.376, 0., 0., 0., -92.376).finished();
 | |
| 
 | |
|   // Verify the Jacobians are correct
 | |
|   CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
 | |
|   CHECK(assert_equal(H3Expected, H3Actual, 1e-3));
 | |
| 
 | |
|   // Verify H2 and H4 with numerical derivatives
 | |
|   Matrix H2Expected = numericalDerivative11<Vector, Pose3>(
 | |
|       [&factor, &pose, &point](const Pose3& body_P_sensor) {
 | |
|         return factor.evaluateError(pose, body_P_sensor, point, *K1);
 | |
|       },
 | |
|       body_P_sensor);
 | |
| 
 | |
|   Matrix H4Expected = numericalDerivative11<Vector, Cal3_S2>(
 | |
|       [&factor, &pose, &body_P_sensor, &point](const Cal3_S2& K) {
 | |
|         return factor.evaluateError(pose, body_P_sensor, point, K);
 | |
|       },
 | |
|       *K1);
 | |
| 
 | |
|   CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
 | |
|   CHECK(assert_equal(H4Expected, H4Actual, 1e-5));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 | |
| 
 |