66 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    testInference.cpp
 | 
						|
 * @brief   Unit tests for functionality declared in inference.h
 | 
						|
 * @author  Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#define GTSAM_MAGIC_KEY
 | 
						|
 | 
						|
#include <gtsam/slam/smallExample.h>
 | 
						|
#include <gtsam/linear/GaussianSequentialSolver.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// The tests below test the *generic* inference algorithms. Some of these have
 | 
						|
// specialized versions in the derived classes GaussianFactorGraph etc...
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, createSmoother)
 | 
						|
{
 | 
						|
	GaussianFactorGraph fg2;
 | 
						|
	Ordering ordering;
 | 
						|
	boost::tie(fg2,ordering) = createSmoother(3);
 | 
						|
	LONGS_EQUAL(5,fg2.size());
 | 
						|
 | 
						|
	// eliminate
 | 
						|
	vector<Index> x3var; x3var.push_back(ordering["x3"]);
 | 
						|
	vector<Index> x1var; x1var.push_back(ordering["x1"]);
 | 
						|
	GaussianBayesNet p_x3 = *GaussianSequentialSolver(*GaussianSequentialSolver(fg2).jointFactorGraph(x3var)).eliminate();
 | 
						|
	GaussianBayesNet p_x1 = *GaussianSequentialSolver(*GaussianSequentialSolver(fg2).jointFactorGraph(x1var)).eliminate();
 | 
						|
	CHECK(assert_equal(*p_x1.back(),*p_x3.front())); // should be the same because of symmetry
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( Inference, marginals )
 | 
						|
{
 | 
						|
	// create and marginalize a small Bayes net on "x"
 | 
						|
  GaussianBayesNet cbn = createSmallGaussianBayesNet();
 | 
						|
  vector<Index> xvar; xvar.push_back(0);
 | 
						|
  GaussianBayesNet actual = *GaussianSequentialSolver(*GaussianSequentialSolver(GaussianFactorGraph(cbn)).jointFactorGraph(xvar)).eliminate();
 | 
						|
 | 
						|
  // expected is just scalar Gaussian on x
 | 
						|
  GaussianBayesNet expected = scalarGaussian(0, 4, sqrt(2));
 | 
						|
  CHECK(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |