141 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
| /** 
 | |
|  * @file    testNonlinearOptimizer.cpp
 | |
|  * @brief   Unit tests for NonlinearOptimizer class
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <iostream>
 | |
| using namespace std;
 | |
| 
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include "Matrix.h"
 | |
| #include "Ordering.h"
 | |
| #include "smallExample.h"
 | |
| 
 | |
| // template definitions
 | |
| #include "NonlinearFactorGraph-inl.h"
 | |
| #include "NonlinearOptimizer-inl.h"
 | |
| 
 | |
| using namespace gtsam;
 | |
| 
 | |
| typedef NonlinearOptimizer<ExampleNonlinearFactorGraph,VectorConfig> Optimizer;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, delta )
 | |
| {
 | |
| 	ExampleNonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
| 	Optimizer::shared_config initial = sharedNoisyConfig();
 | |
| 
 | |
| 	// Expected configuration is the difference between the noisy config
 | |
| 	// and the ground-truth config. One step only because it's linear !
 | |
| 	VectorConfig expected;
 | |
| 	Vector dl1(2);
 | |
| 	dl1(0) = -0.1;
 | |
| 	dl1(1) = 0.1;
 | |
| 	expected.insert("l1", dl1);
 | |
| 	Vector dx1(2);
 | |
| 	dx1(0) = -0.1;
 | |
| 	dx1(1) = -0.1;
 | |
| 	expected.insert("x1", dx1);
 | |
| 	Vector dx2(2);
 | |
| 	dx2(0) = 0.1;
 | |
| 	dx2(1) = -0.2;
 | |
| 	expected.insert("x2", dx2);
 | |
| 
 | |
| 	// Check one ordering
 | |
| 	Ordering ord1;
 | |
| 	ord1 += "x2","l1","x1";
 | |
| 	Optimizer optimizer1(fg, ord1, initial);
 | |
| 	VectorConfig actual1 = optimizer1.linearizeAndOptimizeForDelta();
 | |
| 	CHECK(assert_equal(actual1,expected));
 | |
| 
 | |
| 	// Check another
 | |
| 	Ordering ord2;
 | |
| 	ord2 += "x1","x2","l1";
 | |
| 	Optimizer optimizer2(fg, ord2, initial);
 | |
| 	VectorConfig actual2 = optimizer2.linearizeAndOptimizeForDelta();
 | |
| 	CHECK(assert_equal(actual2,expected));
 | |
| 
 | |
| 	// And yet another...
 | |
| 	Ordering ord3;
 | |
| 	ord3 += "l1","x1","x2";
 | |
| 	Optimizer optimizer3(fg, ord3, initial);
 | |
| 	VectorConfig actual3 = optimizer3.linearizeAndOptimizeForDelta();
 | |
| 	CHECK(assert_equal(actual3,expected));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, iterateLM )
 | |
| {
 | |
| 	// really non-linear factor graph
 | |
| 	ExampleNonlinearFactorGraph fg = createReallyNonlinearFactorGraph();
 | |
| 
 | |
| 	// config far from minimum
 | |
| 	Vector x0 = Vector_(1, 3.0);
 | |
| 	boost::shared_ptr<VectorConfig> config(new VectorConfig);
 | |
| 	config->insert("x", x0);
 | |
| 
 | |
| 	// ordering
 | |
| 	Ordering ord;
 | |
| 	ord.push_back("x");
 | |
| 
 | |
| 	// create initial optimization state, with lambda=0
 | |
| 	Optimizer optimizer(fg, ord, config, 0);
 | |
| 
 | |
| 	// normal iterate
 | |
| 	Optimizer iterated1 = optimizer.iterate();
 | |
| 
 | |
| 	// LM iterate with lambda 0 should be the same
 | |
| 	Optimizer iterated2 = optimizer.iterateLM();
 | |
| 
 | |
| 	CHECK(assert_equal(*iterated1.config(), *iterated2.config(), 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, optimize )
 | |
| {
 | |
| 	ExampleNonlinearFactorGraph fg = createReallyNonlinearFactorGraph();
 | |
| 
 | |
| 	// test error at minimum
 | |
| 	Vector xstar = Vector_(1, 0.0);
 | |
| 	VectorConfig cstar;
 | |
| 	cstar.insert("x", xstar);
 | |
| 	DOUBLES_EQUAL(0.0,fg.error(cstar),0.0);
 | |
| 
 | |
| 	// test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
 | |
| 	Vector x0 = Vector_(1, 3.0);
 | |
| 	boost::shared_ptr<VectorConfig> c0(new VectorConfig);
 | |
| 	c0->insert("x", x0);
 | |
| 	DOUBLES_EQUAL(199.0,fg.error(*c0),1e-3);
 | |
| 
 | |
| 	// optimize parameters
 | |
| 	Ordering ord;
 | |
| 	ord.push_back("x");
 | |
| 	double relativeThreshold = 1e-5;
 | |
| 	double absoluteThreshold = 1e-5;
 | |
| 
 | |
| 	// initial optimization state is the same in both cases tested
 | |
| 	Optimizer optimizer(fg, ord, c0);
 | |
| 
 | |
| 	// Gauss-Newton
 | |
| 	Optimizer actual1 = optimizer.gaussNewton(relativeThreshold,
 | |
| 			absoluteThreshold);
 | |
| 	CHECK(assert_equal(*(actual1.config()),cstar));
 | |
| 
 | |
| 	// Levenberg-Marquardt
 | |
| 	Optimizer actual2 = optimizer.levenbergMarquardt(relativeThreshold,
 | |
| 			absoluteThreshold, Optimizer::SILENT);
 | |
| 	CHECK(assert_equal(*(actual2.config()),cstar));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
| 	TestResult tr;
 | |
| 	return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |