gtsam/gtsam_unstable/slam/tests/testSmartProjectionFactor.cpp

309 lines
11 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testProjectionFactor.cpp
* @brief Unit tests for ProjectionFactor Class
* @author Frank Dellaert
* @date Nov 2009
*/
#include <gtsam_unstable/nonlinear/ConcurrentBatchFilter.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam_unstable/slam/SmartProjectionFactor.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/Symbol.h>
#include <gtsam/nonlinear/Key.h>
#include <gtsam/linear/GaussianSequentialSolver.h>
#include <gtsam/inference/JunctionTree.h>
#include <gtsam_unstable/geometry/triangulation.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Cal3DS2.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
// make a realistic calibration matrix
static double fov = 60; // degrees
static size_t w=640,h=480;
static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
// Create a noise model for the pixel error
static SharedNoiseModel model(noiseModel::Unit::Create(2));
// Convenience for named keys
//using symbol_shorthand::X;
//using symbol_shorthand::L;
//typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
///* ************************************************************************* */
TEST( MultiProjectionFactor, noiseless ){
cout << " ************************ MultiProjectionFactor: noiseless ****************************" << endl;
Values theta;
NonlinearFactorGraph graph;
Symbol x1('X', 1);
Symbol x2('X', 2);
// Symbol x3('X', 3);
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
std::vector<Key> views;
views += x1, x2; //, x3;
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera level_camera(level_pose, *K);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
SimpleCamera level_camera_right(level_pose_right, *K);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 level_uv = level_camera.project(landmark);
Point2 level_uv_right = level_camera_right.project(landmark);
Values value;
value.insert(x1, level_pose);
value.insert(x2, level_pose_right);
// poses += level_pose, level_pose_right;
vector<Point2> measurements;
measurements += level_uv, level_uv_right;
SmartProjectionFactor<Pose3, Point3, Cal3_S2> smartFactor(measurements, noiseProjection, views, K);
double actualError = smartFactor.error(value);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
///* ************************************************************************* */
TEST( MultiProjectionFactor, noisy ){
cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl;
Values theta;
NonlinearFactorGraph graph;
Symbol x1('X', 1);
Symbol x2('X', 2);
// Symbol x3('X', 3);
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
std::vector<Key> views;
views += x1, x2; //, x3;
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
SimpleCamera level_camera(level_pose, *K);
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
SimpleCamera level_camera_right(level_pose_right, *K);
// landmark ~5 meters infront of camera
Point3 landmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate
Point2 pixelError(0.2,0.2);
Point2 level_uv = level_camera.project(landmark) + pixelError;
Point2 level_uv_right = level_camera_right.project(landmark);
Values value;
value.insert(x1, level_pose);
value.insert(x2, level_pose_right);
// poses += level_pose, level_pose_right;
vector<Point2> measurements;
measurements += level_uv, level_uv_right;
SmartProjectionFactor<Pose3, Point3, Cal3_S2> smartFactor(measurements, noiseProjection, views, K);
double actualError = smartFactor.error(value);
double expectedError = sqrt(0.08);
// we do not expect to be able to predict the error, since the error on the pixel will change
// the triangulation of the landmark which is internal to the factor.
// DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
///* ************************************************************************* */
//TEST( ProjectionFactor, nonStandard ) {
// GenericProjectionFactor<Pose3, Point3, Cal3DS2> f;
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, Constructor) {
// Key poseKey(X(1));
// Key pointKey(L(1));
//
// Point2 measurement(323.0, 240.0);
//
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, ConstructorWithTransform) {
// Key poseKey(X(1));
// Key pointKey(L(1));
//
// Point2 measurement(323.0, 240.0);
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
//
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, Equals ) {
// // Create two identical factors and make sure they're equal
// Point2 measurement(323.0, 240.0);
//
// TestProjectionFactor factor1(measurement, model, X(1), L(1), K);
// TestProjectionFactor factor2(measurement, model, X(1), L(1), K);
//
// CHECK(assert_equal(factor1, factor2));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, EqualsWithTransform ) {
// // Create two identical factors and make sure they're equal
// Point2 measurement(323.0, 240.0);
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
//
// TestProjectionFactor factor1(measurement, model, X(1), L(1), K, body_P_sensor);
// TestProjectionFactor factor2(measurement, model, X(1), L(1), K, body_P_sensor);
//
// CHECK(assert_equal(factor1, factor2));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, Error ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
//
// // Set the linearization point
// Pose3 pose(Rot3(), Point3(0,0,-6));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the error
// Vector actualError(factor.evaluateError(pose, point));
//
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
// Vector expectedError = Vector_(2, -3.0, 0.0);
//
// // Verify we get the expected error
// CHECK(assert_equal(expectedError, actualError, 1e-9));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, ErrorWithTransform ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
//
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the error
// Vector actualError(factor.evaluateError(pose, point));
//
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
// Vector expectedError = Vector_(2, -3.0, 0.0);
//
// // Verify we get the expected error
// CHECK(assert_equal(expectedError, actualError, 1e-9));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, Jacobian ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
//
// // Set the linearization point
// Pose3 pose(Rot3(), Point3(0,0,-6));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the Jacobians
// Matrix H1Actual, H2Actual;
// factor.evaluateError(pose, point, H1Actual, H2Actual);
//
// // The expected Jacobians
// Matrix H1Expected = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.);
// Matrix H2Expected = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.);
//
// // Verify the Jacobians are correct
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
// CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
//}
//
///* ************************************************************************* */
//TEST( ProjectionFactor, JacobianWithTransform ) {
// // Create the factor with a measurement that is 3 pixels off in x
// Key poseKey(X(1));
// Key pointKey(L(1));
// Point2 measurement(323.0, 240.0);
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
//
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
// Point3 point(0.0, 0.0, 0.0);
//
// // Use the factor to calculate the Jacobians
// Matrix H1Actual, H2Actual;
// factor.evaluateError(pose, point, H1Actual, H2Actual);
//
// // The expected Jacobians
// Matrix H1Expected = Matrix_(2, 6, -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376);
// Matrix H2Expected = Matrix_(2, 3, 0., -92.376, 0., 0., 0., -92.376);
//
// // Verify the Jacobians are correct
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
// CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
//}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */