332 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
/*
 | 
						|
 * NoiseModel
 | 
						|
 *
 | 
						|
 *  Created on: Jan 13, 2010
 | 
						|
 *      Author: Richard Roberts
 | 
						|
 *      Author: Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
#include <limits>
 | 
						|
#include <iostream>
 | 
						|
#include <typeinfo>
 | 
						|
#include <stdexcept>
 | 
						|
 | 
						|
#include <boost/numeric/ublas/lu.hpp>
 | 
						|
#include <boost/numeric/ublas/io.hpp>
 | 
						|
#include <boost/foreach.hpp>
 | 
						|
#include <boost/random/linear_congruential.hpp>
 | 
						|
#include <boost/random/normal_distribution.hpp>
 | 
						|
#include <boost/random/variate_generator.hpp>
 | 
						|
 | 
						|
#include "NoiseModel.h"
 | 
						|
#include "SharedDiagonal.h"
 | 
						|
#include "SPQRUtil.h"
 | 
						|
 | 
						|
namespace ublas = boost::numeric::ublas;
 | 
						|
typedef ublas::matrix_column<Matrix> column;
 | 
						|
 | 
						|
static double inf = std::numeric_limits<double>::infinity();
 | 
						|
using namespace std;
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
namespace noiseModel {
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// update A, b
 | 
						|
// A' \define A_{S}-ar and b'\define b-ad
 | 
						|
// Linear algebra: takes away projection on latest orthogonal
 | 
						|
// Graph: make a new factor on the separator S
 | 
						|
// __attribute__ ((noinline))	// uncomment to prevent inlining when profiling
 | 
						|
static void updateAb(Matrix& Ab, int j, const Vector& a, const Vector& rd) {
 | 
						|
	size_t m = Ab.size1(), n = Ab.size2()-1;
 | 
						|
 | 
						|
	for (int i = 0; i < m; i++) { // update all rows
 | 
						|
		double ai = a(i);
 | 
						|
		double *Aij = Ab.data().begin() + i * (n+1) + j + 1;
 | 
						|
		const double *rptr = rd.data().begin() + j + 1;
 | 
						|
		// Ab(i,j+1:end) -= ai*rd(j+1:end)
 | 
						|
		for (int j2 = j + 1; j2 < n+1; j2++, Aij++, rptr++)
 | 
						|
			*Aij -= ai * (*rptr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance, bool smart) {
 | 
						|
	size_t m = covariance.size1(), n = covariance.size2();
 | 
						|
	if (m != n) throw invalid_argument("Gaussian::Covariance: covariance not square");
 | 
						|
	if (smart) {
 | 
						|
		// check all non-diagonal entries
 | 
						|
		int i,j;
 | 
						|
		for (i = 0; i < m; i++)
 | 
						|
			for (j = 0; j < n; j++)
 | 
						|
				if (i != j && fabs(covariance(i, j) > 1e-9)) goto full;
 | 
						|
		Vector variances(n);
 | 
						|
		for (j = 0; j < n; j++) variances(j) = covariance(j,j);
 | 
						|
		return Diagonal::Variances(variances,true);
 | 
						|
	}
 | 
						|
	full: return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
 | 
						|
}
 | 
						|
 | 
						|
void Gaussian::print(const string& name) const {
 | 
						|
	gtsam::print(thisR(), "Gaussian");
 | 
						|
}
 | 
						|
 | 
						|
bool Gaussian::equals(const Base& expected, double tol) const {
 | 
						|
	const Gaussian* p = dynamic_cast<const Gaussian*> (&expected);
 | 
						|
	if (p == NULL) return false;
 | 
						|
	if (typeid(*this) != typeid(*p)) return false;
 | 
						|
	//if (!sqrt_information_) return true; // ALEX todo;
 | 
						|
	return equal_with_abs_tol(R(), p->R(), sqrt(tol));
 | 
						|
}
 | 
						|
 | 
						|
Vector Gaussian::whiten(const Vector& v) const {
 | 
						|
	return thisR() * v;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Vector Gaussian::unwhiten(const Vector& v) const {
 | 
						|
	return backSubstituteUpper(thisR(), v);
 | 
						|
}
 | 
						|
 | 
						|
double Gaussian::Mahalanobis(const Vector& v) const {
 | 
						|
	// Note: for Diagonal, which does ediv_, will be correct for constraints
 | 
						|
	Vector w = whiten(v);
 | 
						|
	return inner_prod(w, w);
 | 
						|
}
 | 
						|
 | 
						|
Matrix Gaussian::Whiten(const Matrix& H) const {
 | 
						|
	return thisR() * H;
 | 
						|
}
 | 
						|
 | 
						|
void Gaussian::WhitenInPlace(Matrix& H) const {
 | 
						|
	H = thisR() * H;
 | 
						|
}
 | 
						|
 | 
						|
// General QR, see also special version in Constrained
 | 
						|
SharedDiagonal Gaussian::QR(Matrix& Ab) const {
 | 
						|
 | 
						|
	// get size(A) and maxRank
 | 
						|
	// TODO: really no rank problems ?
 | 
						|
	size_t m = Ab.size1(), n = Ab.size2()-1;
 | 
						|
	size_t maxRank = min(m,n);
 | 
						|
 | 
						|
	// pre-whiten everything (cheaply if possible)
 | 
						|
	WhitenInPlace(Ab);
 | 
						|
 | 
						|
	// Perform in-place Householder
 | 
						|
#ifdef GT_USE_LAPACK
 | 
						|
	long* Stair = MakeStairs(Ab);
 | 
						|
	householder_spqr(Ab, Stair);
 | 
						|
//		householder_spqr(Ab);
 | 
						|
#else
 | 
						|
	householder(Ab, maxRank);
 | 
						|
#endif
 | 
						|
 | 
						|
	return Unit::Create(maxRank);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
Diagonal::Diagonal(const Vector& sigmas) :
 | 
						|
		Gaussian(sigmas.size()), invsigmas_(reciprocal(sigmas)), sigmas_(sigmas) {
 | 
						|
}
 | 
						|
 | 
						|
Diagonal::shared_ptr Diagonal::Variances(const Vector& variances, bool smart) {
 | 
						|
	if (smart) {
 | 
						|
		// check whether all the same entry
 | 
						|
		int j, n = variances.size();
 | 
						|
		for (j = 1; j < n; j++)
 | 
						|
			if (variances(j) != variances(0)) goto full;
 | 
						|
		return Isotropic::Variance(n, variances(0), true);
 | 
						|
	}
 | 
						|
	full: return shared_ptr(new Diagonal(esqrt(variances)));
 | 
						|
}
 | 
						|
 | 
						|
Diagonal::shared_ptr Diagonal::Sigmas(const Vector& sigmas, bool smart) {
 | 
						|
	if (smart) {
 | 
						|
		// look for zeros to make a constraint
 | 
						|
		for (size_t i=0; i<sigmas.size(); ++i)
 | 
						|
			if (sigmas(i)<1e-8)
 | 
						|
				return Constrained::MixedSigmas(sigmas);
 | 
						|
	}
 | 
						|
	return Diagonal::shared_ptr(new Diagonal(sigmas));
 | 
						|
}
 | 
						|
 | 
						|
void Diagonal::print(const string& name) const {
 | 
						|
	gtsam::print(sigmas_, "Diagonal sigmas " + name);
 | 
						|
}
 | 
						|
 | 
						|
Vector Diagonal::whiten(const Vector& v) const {
 | 
						|
	return emul(v, invsigmas_);
 | 
						|
}
 | 
						|
 | 
						|
Vector Diagonal::unwhiten(const Vector& v) const {
 | 
						|
	return emul(v, sigmas_);
 | 
						|
}
 | 
						|
 | 
						|
Matrix Diagonal::Whiten(const Matrix& H) const {
 | 
						|
	return vector_scale(invsigmas_, H);
 | 
						|
}
 | 
						|
 | 
						|
void Diagonal::WhitenInPlace(Matrix& H) const {
 | 
						|
	vector_scale_inplace(invsigmas_, H);
 | 
						|
}
 | 
						|
 | 
						|
Vector Diagonal::sample() const {
 | 
						|
	Vector result(dim_);
 | 
						|
	for (int i = 0; i < dim_; i++) {
 | 
						|
		typedef boost::normal_distribution<double> Normal;
 | 
						|
		Normal dist(0.0, this->sigmas_(i));
 | 
						|
		boost::variate_generator<boost::minstd_rand&, Normal> norm(generator, dist);
 | 
						|
		result(i) = norm();
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
void Constrained::print(const std::string& name) const {
 | 
						|
	gtsam::print(sigmas_, "Constrained sigmas " + name);
 | 
						|
}
 | 
						|
 | 
						|
Vector Constrained::whiten(const Vector& v) const {
 | 
						|
	// ediv_ does the right thing with the errors
 | 
						|
	return ediv_(v, sigmas_);
 | 
						|
}
 | 
						|
 | 
						|
Matrix Constrained::Whiten(const Matrix& H) const {
 | 
						|
	throw logic_error("noiseModel::Constrained cannot Whiten");
 | 
						|
}
 | 
						|
 | 
						|
void Constrained::WhitenInPlace(Matrix& H) const {
 | 
						|
	throw logic_error("noiseModel::Constrained cannot Whiten");
 | 
						|
}
 | 
						|
 | 
						|
// Special version of QR for Constrained calls slower but smarter code
 | 
						|
// that deals with possibly zero sigmas
 | 
						|
// It is Gram-Schmidt orthogonalization rather than Householder
 | 
						|
// Previously Diagonal::QR
 | 
						|
SharedDiagonal Constrained::QR(Matrix& Ab) const {
 | 
						|
	bool verbose = false;
 | 
						|
	if (verbose) cout << "\nStarting Constrained::QR" << endl;
 | 
						|
 | 
						|
	// get size(A) and maxRank
 | 
						|
	size_t m = Ab.size1(), n = Ab.size2()-1;
 | 
						|
	size_t maxRank = min(m,n);
 | 
						|
 | 
						|
	// create storage for [R d]
 | 
						|
	typedef boost::tuple<size_t, Vector, double> Triple;
 | 
						|
	list<Triple> Rd;
 | 
						|
 | 
						|
	Vector pseudo(m); // allocate storage for pseudo-inverse
 | 
						|
	Vector weights = emul(invsigmas_,invsigmas_); // calculate weights once
 | 
						|
 | 
						|
	// We loop over all columns, because the columns that can be eliminated
 | 
						|
	// are not necessarily contiguous. For each one, estimate the corresponding
 | 
						|
	// scalar variable x as d-rS, with S the separator (remaining columns).
 | 
						|
	// Then update A and b by substituting x with d-rS, zero-ing out x's column.
 | 
						|
	for (size_t j=0; j<n; ++j) {
 | 
						|
		// extract the first column of A
 | 
						|
		// ublas::matrix_column is slower ! TODO Really, why ????
 | 
						|
		//  AGC: if you use column() you will automatically call ublas, use
 | 
						|
		//      column_() to actually use the one in our library
 | 
						|
		Vector a(column(Ab, j));
 | 
						|
 | 
						|
		// Calculate weighted pseudo-inverse and corresponding precision
 | 
						|
		double precision = weightedPseudoinverse(a, weights, pseudo);
 | 
						|
 | 
						|
		// If precision is zero, no information on this column
 | 
						|
		// This is actually not limited to constraints, could happen in Gaussian::QR
 | 
						|
		// In that case, we're probably hosed. TODO: make sure Householder is rank-revealing
 | 
						|
		if (precision < 1e-8) continue;
 | 
						|
 | 
						|
		// create solution [r d], rhs is automatically r(n)
 | 
						|
		Vector rd(n+1); // uninitialized !
 | 
						|
		rd(j)=1.0; // put 1 on diagonal
 | 
						|
		for (size_t j2=j+1; j2<n+1; ++j2) // and fill in remainder with dot-products
 | 
						|
			rd(j2) = inner_prod(pseudo, ublas::matrix_column<Matrix>(Ab, j2));
 | 
						|
 | 
						|
		// construct solution (r, d, sigma)
 | 
						|
		Rd.push_back(boost::make_tuple(j, rd, precision));
 | 
						|
 | 
						|
		// exit after rank exhausted
 | 
						|
		if (Rd.size()>=maxRank) break;
 | 
						|
 | 
						|
		// update Ab, expensive, using outer product
 | 
						|
		updateAb(Ab, j, a, rd);
 | 
						|
	}
 | 
						|
 | 
						|
	// Create storage for precisions
 | 
						|
	Vector precisions(Rd.size());
 | 
						|
 | 
						|
	// Write back result in Ab, imperative as we are
 | 
						|
	// TODO: test that is correct if a column was skipped !!!!
 | 
						|
	size_t i = 0; // start with first row
 | 
						|
	bool mixed = false;
 | 
						|
	BOOST_FOREACH(const Triple& t, Rd) {
 | 
						|
		const size_t& j  = t.get<0>();
 | 
						|
		const Vector& rd = t.get<1>();
 | 
						|
		precisions(i)    = t.get<2>();
 | 
						|
		if (precisions(i)==inf) mixed = true;
 | 
						|
		for (size_t j2=0; j2<j; ++j2) Ab(i,j2) = 0.0; // fill in zeros below diagonal anway
 | 
						|
		for (size_t j2=j; j2<n+1; ++j2) // copy the j-the row TODO memcpy
 | 
						|
			Ab(i,j2) = rd(j2);
 | 
						|
		i+=1;
 | 
						|
	}
 | 
						|
 | 
						|
	return mixed ? Constrained::MixedPrecisions(precisions) : Diagonal::Precisions(precisions);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
Isotropic::shared_ptr Isotropic::Variance(size_t dim, double variance, bool smart)  {
 | 
						|
	if (smart && fabs(variance-1.0)<1e-9) return Unit::Create(dim);
 | 
						|
	return shared_ptr(new Isotropic(dim, sqrt(variance)));
 | 
						|
}
 | 
						|
 | 
						|
void Isotropic::print(const string& name) const {
 | 
						|
	cout << "Isotropic sigma " << name << " " << sigma_ << endl;
 | 
						|
}
 | 
						|
 | 
						|
double Isotropic::Mahalanobis(const Vector& v) const {
 | 
						|
	double dot = inner_prod(v, v);
 | 
						|
	return dot * invsigma_ * invsigma_;
 | 
						|
}
 | 
						|
 | 
						|
Vector Isotropic::whiten(const Vector& v) const {
 | 
						|
	return v * invsigma_;
 | 
						|
}
 | 
						|
 | 
						|
Vector Isotropic::unwhiten(const Vector& v) const {
 | 
						|
	return v * sigma_;
 | 
						|
}
 | 
						|
 | 
						|
Matrix Isotropic::Whiten(const Matrix& H) const {
 | 
						|
	return invsigma_ * H;
 | 
						|
}
 | 
						|
 | 
						|
void Isotropic::WhitenInPlace(Matrix& H) const {
 | 
						|
	H *= invsigma_;
 | 
						|
}
 | 
						|
 | 
						|
// faster version
 | 
						|
Vector Isotropic::sample() const {
 | 
						|
	typedef boost::normal_distribution<double> Normal;
 | 
						|
	Normal dist(0.0, this->sigma_);
 | 
						|
	boost::variate_generator<boost::minstd_rand&, Normal> norm(generator, dist);
 | 
						|
	Vector result(dim_);
 | 
						|
	for (int i = 0; i < dim_; i++)
 | 
						|
		result(i) = norm();
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void Unit::print(const std::string& name) const {
 | 
						|
	cout << "Unit (" << dim_ << ") " << name << endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
}
 | 
						|
} // gtsam
 |