505 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			505 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
#include <Eigen/Dense>
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <stdexcept>
 | 
						|
#include <complex>
 | 
						|
 | 
						|
typedef ::std::complex< double > __pyx_t_double_complex;
 | 
						|
typedef ::std::complex< float > __pyx_t_float_complex;
 | 
						|
 | 
						|
#include "conversions_api.h"
 | 
						|
 | 
						|
#ifndef EIGENCY_CPP
 | 
						|
#define EIGENCY_CPP
 | 
						|
 | 
						|
namespace eigency {
 | 
						|
 | 
						|
template<typename Scalar>
 | 
						|
inline PyArrayObject *_ndarray_view(Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
 | 
						|
template<typename Scalar>
 | 
						|
inline PyArrayObject *_ndarray_copy(const Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
 | 
						|
 | 
						|
// Strides:
 | 
						|
// Eigen and numpy differ in their way of dealing with strides. Eigen has the concept of outer and
 | 
						|
// inner strides, which are dependent on whether the array/matrix is row-major of column-major:
 | 
						|
//     Inner stride: denotes the offset between succeeding elements in each row (row-major) or column (column-major).
 | 
						|
//     Outer stride: denotes the offset between succeeding rows (row-major) or succeeding columns (column-major).
 | 
						|
// In contrast, numpy's stride is simply a measure of how fast each dimension should be incremented.
 | 
						|
// Consequently, a switch in numpy storage order from row-major to column-major involves a switch
 | 
						|
// in strides, while it does not affect the stride in Eigen.
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<double>(double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major) {
 | 
						|
        // Eigen row-major mode: row_stride=outer_stride, and col_stride=inner_stride
 | 
						|
        // If no stride is given, the row_stride is set to the number of columns.
 | 
						|
        return ndarray_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    } else {
 | 
						|
        // Eigen column-major mode: row_stride=outer_stride, and col_stride=inner_stride
 | 
						|
        // If no stride is given, the cow_stride is set to the number of rows.        
 | 
						|
        return ndarray_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
    }
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<double>(const double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<float>(float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<float>(const float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<long>(long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<long>(const long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<unsigned long>(unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<unsigned long>(const unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<int>(int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<int>(const int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<unsigned int>(unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<unsigned int>(const unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<short>(short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<short>(const short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<unsigned short>(unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<unsigned short>(const unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<signed char>(signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<signed char>(const signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<unsigned char>(unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<unsigned char>(const unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<std::complex<double> >(std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<std::complex<double> >(const std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_view<std::complex<float> >(std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
template<>
 | 
						|
inline PyArrayObject *_ndarray_copy<std::complex<float> >(const std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
 | 
						|
    if (is_row_major)
 | 
						|
        return ndarray_copy_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
 | 
						|
    else
 | 
						|
        return ndarray_copy_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename Derived>
 | 
						|
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
 | 
						|
}
 | 
						|
// If C++11 is available, check if m is an r-value reference, in
 | 
						|
// which case a copy should always be made
 | 
						|
#if __cplusplus >= 201103L
 | 
						|
template <typename Derived>
 | 
						|
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &&m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
 | 
						|
}
 | 
						|
#endif
 | 
						|
template <typename Derived>
 | 
						|
inline PyArrayObject *ndarray(const Eigen::PlainObjectBase<Derived> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
 | 
						|
}
 | 
						|
template <typename Derived>
 | 
						|
inline PyArrayObject *ndarray_view(Eigen::PlainObjectBase<Derived> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
 | 
						|
}
 | 
						|
template <typename Derived>
 | 
						|
inline PyArrayObject *ndarray_view(const Eigen::PlainObjectBase<Derived> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor);
 | 
						|
}
 | 
						|
template <typename Derived>
 | 
						|
inline PyArrayObject *ndarray_copy(const Eigen::PlainObjectBase<Derived> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
 | 
						|
}
 | 
						|
 | 
						|
template <typename Derived, int MapOptions, typename Stride>
 | 
						|
inline PyArrayObject *ndarray(Eigen::Map<Derived, MapOptions, Stride> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
 | 
						|
}
 | 
						|
template <typename Derived, int MapOptions, typename Stride>
 | 
						|
inline PyArrayObject *ndarray(const Eigen::Map<Derived, MapOptions, Stride> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    // Since this is a map, we assume that ownership is correctly taken care
 | 
						|
    // of, and we avoid taking a copy
 | 
						|
    return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
 | 
						|
}
 | 
						|
template <typename Derived, int MapOptions, typename Stride>
 | 
						|
inline PyArrayObject *ndarray_view(Eigen::Map<Derived, MapOptions, Stride> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
 | 
						|
}
 | 
						|
template <typename Derived, int MapOptions, typename Stride>
 | 
						|
inline PyArrayObject *ndarray_view(const Eigen::Map<Derived, MapOptions, Stride> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
 | 
						|
}
 | 
						|
template <typename Derived, int MapOptions, typename Stride>
 | 
						|
inline PyArrayObject *ndarray_copy(const Eigen::Map<Derived, MapOptions, Stride> &m) {
 | 
						|
    import_gtsam_eigency__conversions();
 | 
						|
    return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename MatrixType,
 | 
						|
          int _MapOptions = Eigen::Unaligned,
 | 
						|
          typename _StrideType=Eigen::Stride<0,0> >
 | 
						|
class MapBase: public Eigen::Map<MatrixType, _MapOptions, _StrideType> {
 | 
						|
public:
 | 
						|
    typedef Eigen::Map<MatrixType, _MapOptions, _StrideType> Base;
 | 
						|
    typedef typename Base::Scalar Scalar;
 | 
						|
 | 
						|
    MapBase(Scalar* data,
 | 
						|
            long rows,
 | 
						|
            long cols,
 | 
						|
            _StrideType stride=_StrideType())
 | 
						|
        : Base(data,
 | 
						|
               // If both dimensions are dynamic or dimensions match, accept dimensions as they are
 | 
						|
               ((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
 | 
						|
                (Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
 | 
						|
               ? rows
 | 
						|
               // otherwise, test if swapping them makes them fit
 | 
						|
               : ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
 | 
						|
                  ? cols
 | 
						|
                  : rows),
 | 
						|
               ((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
 | 
						|
                (Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
 | 
						|
               ? cols
 | 
						|
               : ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
 | 
						|
                  ? rows
 | 
						|
                  : cols),
 | 
						|
               stride
 | 
						|
            )  {}
 | 
						|
 | 
						|
    MapBase &operator=(const MatrixType &other) {
 | 
						|
        Base::operator=(other);
 | 
						|
        return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual ~MapBase() { }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
template <template<class,int,int,int,int,int> class EigencyDenseBase,
 | 
						|
          typename Scalar,
 | 
						|
          int _Rows, int _Cols,
 | 
						|
          int _Options = Eigen::AutoAlign |
 | 
						|
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
 | 
						|
    // workaround a bug in at least gcc 3.4.6
 | 
						|
    // the innermost ?: ternary operator is misparsed. We write it slightly
 | 
						|
    // differently and this makes gcc 3.4.6 happy, but it's ugly.
 | 
						|
    // The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
 | 
						|
    // (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
 | 
						|
                          ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
 | 
						|
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
 | 
						|
#if EIGEN_VERSION_AT_LEAST(3,2,90)
 | 
						|
                          : !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
 | 
						|
#else
 | 
						|
                          : !(_Cols==1 && _Rows!=1) ? Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
 | 
						|
#endif
 | 
						|
                          : ColMajor ),
 | 
						|
#else
 | 
						|
                          ( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
 | 
						|
                          : (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
 | 
						|
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
 | 
						|
#if EIGEN_VERSION_AT_LEAST(3,2,90)
 | 
						|
                          : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
 | 
						|
#else
 | 
						|
                          : Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
          int _MapOptions = Eigen::Unaligned,
 | 
						|
          int _StrideOuter=0, int _StrideInner=0,
 | 
						|
          int _MaxRows = _Rows,
 | 
						|
          int _MaxCols = _Cols>
 | 
						|
class FlattenedMap: public MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> >  {
 | 
						|
public:
 | 
						|
    typedef MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > Base;
 | 
						|
 | 
						|
    FlattenedMap()
 | 
						|
        : Base(NULL, 0, 0),
 | 
						|
          object_(NULL) {}
 | 
						|
    
 | 
						|
    FlattenedMap(Scalar *data, long rows, long cols, long outer_stride=0, long inner_stride=0)
 | 
						|
        : Base(data, rows, cols,
 | 
						|
               Eigen::Stride<_StrideOuter, _StrideInner>(outer_stride, inner_stride)),
 | 
						|
          object_(NULL) {
 | 
						|
    }
 | 
						|
 | 
						|
    FlattenedMap(PyArrayObject *object)
 | 
						|
        : Base((Scalar *)((PyArrayObject*)object)->data,        
 | 
						|
        // : Base(_from_numpy<Scalar>((PyArrayObject*)object),
 | 
						|
               (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
 | 
						|
               (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0],
 | 
						|
               Eigen::Stride<_StrideOuter, _StrideInner>(_StrideOuter != Eigen::Dynamic ? _StrideOuter : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
 | 
						|
                                                         _StrideInner != Eigen::Dynamic ? _StrideInner : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0])),
 | 
						|
          object_(object) {
 | 
						|
 | 
						|
        if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
 | 
						|
            throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
 | 
						|
 | 
						|
        Py_XINCREF(object_);
 | 
						|
    }
 | 
						|
    FlattenedMap &operator=(const FlattenedMap &other) {
 | 
						|
        if (other.object_) {
 | 
						|
            new (this) FlattenedMap(other.object_);
 | 
						|
        } else {
 | 
						|
            // Replace the memory that we point to (not a memory allocation)
 | 
						|
            new (this) FlattenedMap(const_cast<Scalar*>(other.data()),
 | 
						|
                                    other.rows(),
 | 
						|
                                    other.cols(),
 | 
						|
                                    other.outerStride(),
 | 
						|
                                    other.innerStride());
 | 
						|
        }
 | 
						|
 | 
						|
        return *this;
 | 
						|
    }
 | 
						|
    
 | 
						|
    operator Base() const {
 | 
						|
        return static_cast<Base>(*this);
 | 
						|
    }
 | 
						|
 | 
						|
    operator Base&() const {
 | 
						|
        return static_cast<Base&>(*this);
 | 
						|
    }
 | 
						|
 | 
						|
    operator EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>() const {
 | 
						|
        return EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>(static_cast<Base>(*this));
 | 
						|
    }
 | 
						|
 | 
						|
    virtual ~FlattenedMap() {
 | 
						|
        Py_XDECREF(object_);
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    PyArrayObject * const object_;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
template <typename MatrixType>
 | 
						|
class Map: public MapBase<MatrixType> {
 | 
						|
public:
 | 
						|
    typedef MapBase<MatrixType> Base;
 | 
						|
    typedef typename MatrixType::Scalar Scalar;
 | 
						|
 | 
						|
    enum {
 | 
						|
        RowsAtCompileTime = Base::Base::RowsAtCompileTime,
 | 
						|
        ColsAtCompileTime = Base::Base::ColsAtCompileTime
 | 
						|
    };
 | 
						|
 | 
						|
    Map()
 | 
						|
        : Base(NULL,
 | 
						|
               (RowsAtCompileTime == Eigen::Dynamic) ? 0 : RowsAtCompileTime,
 | 
						|
               (ColsAtCompileTime == Eigen::Dynamic) ? 0 : ColsAtCompileTime),
 | 
						|
          object_(NULL) {
 | 
						|
    }
 | 
						|
    
 | 
						|
    Map(Scalar *data, long rows, long cols)
 | 
						|
        : Base(data, rows, cols),
 | 
						|
          object_(NULL) {}
 | 
						|
 | 
						|
    Map(PyArrayObject *object)
 | 
						|
        : Base((PyObject*)object == Py_None? NULL: (Scalar *)object->data,
 | 
						|
               // ROW: If array is in row-major order, transpose (see README)
 | 
						|
               (PyObject*)object == Py_None? 0 :
 | 
						|
               (!PyArray_IS_F_CONTIGUOUS(object)
 | 
						|
                ? ((object->nd == 1)
 | 
						|
                   ? 1  // ROW: If 1D row-major numpy array, set to 1 (row vector)
 | 
						|
                   : object->dimensions[1])
 | 
						|
                : object->dimensions[0]),
 | 
						|
               // COLUMN: If array is in row-major order: transpose (see README)
 | 
						|
               (PyObject*)object == Py_None? 0 :
 | 
						|
               (!PyArray_IS_F_CONTIGUOUS(object)
 | 
						|
                ? object->dimensions[0]
 | 
						|
                : ((object->nd == 1)
 | 
						|
                   ? 1  // COLUMN: If 1D col-major numpy array, set to length (column vector)
 | 
						|
                   : object->dimensions[1]))),
 | 
						|
          object_(object) {
 | 
						|
 | 
						|
        if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
 | 
						|
            throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
 | 
						|
        Py_XINCREF(object_);
 | 
						|
    }
 | 
						|
    
 | 
						|
    Map &operator=(const Map &other) {
 | 
						|
        if (other.object_) {
 | 
						|
            new (this) Map(other.object_);
 | 
						|
        } else {
 | 
						|
            // Replace the memory that we point to (not a memory allocation)
 | 
						|
            new (this) Map(const_cast<Scalar*>(other.data()),
 | 
						|
                          other.rows(),
 | 
						|
                          other.cols());
 | 
						|
        }
 | 
						|
 | 
						|
        return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    Map &operator=(const MatrixType &other) {
 | 
						|
        MapBase<MatrixType>::operator=(other);
 | 
						|
        return *this;
 | 
						|
    }
 | 
						|
    
 | 
						|
    operator Base() const {
 | 
						|
        return static_cast<Base>(*this);
 | 
						|
    }
 | 
						|
 | 
						|
    operator Base&() const {
 | 
						|
        return static_cast<Base&>(*this);
 | 
						|
    }
 | 
						|
 | 
						|
    operator MatrixType() const {
 | 
						|
        return MatrixType(static_cast<Base>(*this));
 | 
						|
    }
 | 
						|
 | 
						|
    virtual ~Map() {
 | 
						|
        Py_XDECREF(object_);
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    PyArrayObject * const object_;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
 |