92 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file PlanarSLAMExample.cpp
 | |
|  * @brief Simple robotics example using the pre-built planar SLAM domain
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <cmath>
 | |
| #include <iostream>
 | |
| 
 | |
| // pull in the planar SLAM domain with all typedefs and helper functions defined
 | |
| #include <gtsam/slam/planarSLAM.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace planarSLAM;
 | |
| 
 | |
| /**
 | |
|  * In this version of the system we make the following assumptions:
 | |
|  *  - All values are axis aligned
 | |
|  *  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | |
|  *  - We have bearing and range information for measurements
 | |
|  *  - We have full odometry for measurements
 | |
|  *  - The robot and landmarks are on a grid, moving 2 meters each step
 | |
|  *  - Landmarks are 2 meters away from the robot trajectory
 | |
|  */
 | |
| int main(int argc, char** argv) {
 | |
| 
 | |
|   // create graph container and add factors to it
 | |
| 	Graph graph;
 | |
| 
 | |
| 	/* add prior  */
 | |
| 	// gaussian for prior
 | |
| 	SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
 | |
| 	Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
 | |
| 	graph.addPrior(1, prior_measurement, prior_model); // add directly to graph
 | |
| 
 | |
| 	/* add odometry */
 | |
| 	// general noisemodel for odometry
 | |
| 	SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
 | |
| 	Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | |
| 	graph.addOdometry(1, 2, odom_measurement, odom_model);
 | |
| 	graph.addOdometry(2, 3, odom_measurement, odom_model);
 | |
| 
 | |
| 	/* add measurements */
 | |
| 	// general noisemodel for measurements
 | |
| 	SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2));
 | |
| 
 | |
| 	// create the measurement values - indices are (pose id, landmark id)
 | |
| 	Rot2 bearing11 = Rot2::fromDegrees(45),
 | |
| 		 bearing21 = Rot2::fromDegrees(90),
 | |
| 		 bearing32 = Rot2::fromDegrees(90);
 | |
| 	double range11 = sqrt(4+4),
 | |
| 		   range21 = 2.0,
 | |
| 		   range32 = 2.0;
 | |
| 
 | |
| 	// create bearing/range factors and add them
 | |
| 	graph.addBearingRange(1, 1, bearing11, range11, meas_model);
 | |
| 	graph.addBearingRange(2, 1, bearing21, range21, meas_model);
 | |
| 	graph.addBearingRange(3, 2, bearing32, range32, meas_model);
 | |
| 
 | |
| 	graph.print("full graph");
 | |
| 
 | |
| 	// initialize to noisy points
 | |
| 	planarSLAM::Values initialEstimate;
 | |
| 	initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
 | |
| 	initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
 | |
| 	initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
 | |
| 	initialEstimate.insertPoint(1, Point2(1.8, 2.1));
 | |
| 	initialEstimate.insertPoint(2, Point2(4.1, 1.8));
 | |
| 
 | |
| 	initialEstimate.print("initial estimate");
 | |
| 
 | |
| 	// optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | |
| 	planarSLAM::Values result = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
 | |
| 	result.print("final result");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 |