96 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						||
 | 
						||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						||
 * Atlanta, Georgia 30332-0415
 | 
						||
 * All Rights Reserved
 | 
						||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						||
 | 
						||
 * See LICENSE for the license information
 | 
						||
 | 
						||
 * -------------------------------------------------------------------------- */
 | 
						||
 | 
						||
/**
 | 
						||
 * @file IEKF_NavstateExample.cpp
 | 
						||
 * @brief InvariantEKF on NavState (SE_2(3)) with IMU (predict) and GPS (update)
 | 
						||
 * @date April 25, 2025
 | 
						||
 * @authors Scott Baker, Matt Kielo, Frank Dellaert
 | 
						||
 */
 | 
						||
 | 
						||
#include <gtsam/base/Matrix.h>
 | 
						||
#include <gtsam/base/OptionalJacobian.h>
 | 
						||
#include <gtsam/navigation/InvariantEKF.h>
 | 
						||
#include <gtsam/navigation/NavState.h>
 | 
						||
 | 
						||
#include <iostream>
 | 
						||
 | 
						||
using namespace std;
 | 
						||
using namespace gtsam;
 | 
						||
 | 
						||
/**
 | 
						||
 * @brief Left-invariant dynamics for NavState.
 | 
						||
 * @param imu  6×1 vector [a; ω]: linear acceleration and angular velocity.
 | 
						||
 * @return     9×1 tangent: [ω; 0₃; a].
 | 
						||
 */
 | 
						||
Vector9 dynamics(const Vector6& imu) {
 | 
						||
  auto a = imu.head<3>();
 | 
						||
  auto w = imu.tail<3>();
 | 
						||
  Vector9 xi;
 | 
						||
  xi << w, Vector3::Zero(), a;
 | 
						||
  return xi;
 | 
						||
}
 | 
						||
 | 
						||
/**
 | 
						||
 * @brief GPS measurement model: returns position and its Jacobian.
 | 
						||
 * @param X    Current state.
 | 
						||
 * @param H    Optional 3×9 Jacobian w.r.t. X.
 | 
						||
 * @return     3×1 position vector.
 | 
						||
 */
 | 
						||
Vector3 h_gps(const NavState& X, OptionalJacobian<3, 9> H = {}) {
 | 
						||
  return X.position(H);
 | 
						||
}
 | 
						||
 | 
						||
int main() {
 | 
						||
  // Initial state & covariances
 | 
						||
  NavState X0;  // R=I, v=0, t=0
 | 
						||
  Matrix9 P0 = Matrix9::Identity() * 0.1;
 | 
						||
  InvariantEKF<NavState> ekf(X0, P0);
 | 
						||
 | 
						||
  // Noise & timestep
 | 
						||
  double dt = 1.0;
 | 
						||
  Matrix9 Q = Matrix9::Identity() * 0.01;
 | 
						||
  Matrix3 R = Matrix3::Identity() * 0.5;
 | 
						||
 | 
						||
  // Two IMU samples [a; ω]
 | 
						||
  Vector6 imu1;
 | 
						||
  imu1 << 0.1, 0, 0, 0, 0.2, 0;
 | 
						||
  Vector6 imu2;
 | 
						||
  imu2 << 0, 0.3, 0, 0.4, 0, 0;
 | 
						||
 | 
						||
  // Two GPS fixes
 | 
						||
  Vector3 z1;
 | 
						||
  z1 << 0.3, 0, 0;
 | 
						||
  Vector3 z2;
 | 
						||
  z2 << 0.6, 0, 0;
 | 
						||
 | 
						||
  cout << "=== Init ===\nX: " << ekf.state() << "\nP: " << ekf.covariance()
 | 
						||
       << "\n\n";
 | 
						||
 | 
						||
  // --- first predict/update ---
 | 
						||
  ekf.predict(dynamics(imu1), dt, Q);
 | 
						||
  cout << "--- After predict 1 ---\nX: " << ekf.state()
 | 
						||
       << "\nP: " << ekf.covariance() << "\n\n";
 | 
						||
  ekf.update(h_gps, z1, R);
 | 
						||
  cout << "--- After update 1 ---\nX: " << ekf.state()
 | 
						||
       << "\nP: " << ekf.covariance() << "\n\n";
 | 
						||
 | 
						||
  // --- second predict/update ---
 | 
						||
  ekf.predict(dynamics(imu2), dt, Q);
 | 
						||
  cout << "--- After predict 2 ---\nX: " << ekf.state()
 | 
						||
       << "\nP: " << ekf.covariance() << "\n\n";
 | 
						||
  ekf.update(h_gps, z2, R);
 | 
						||
  cout << "--- After update 2 ---\nX: " << ekf.state()
 | 
						||
       << "\nP: " << ekf.covariance() << "\n";
 | 
						||
 | 
						||
  return 0;
 | 
						||
}
 |