140 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file PlanarSLAMSelfContained_advanced.cpp
 | |
|  * @brief Simple robotics example with all typedefs internal to this script.
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <cmath>
 | |
| #include <iostream>
 | |
| 
 | |
| // for all nonlinear keys
 | |
| #include <gtsam/nonlinear/Symbol.h>
 | |
| 
 | |
| // for points and poses
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| 
 | |
| // for modeling measurement uncertainty - all models included here
 | |
| #include <gtsam/linear/NoiseModel.h>
 | |
| 
 | |
| // add in headers for specific factors
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/BearingRangeFactor.h>
 | |
| 
 | |
| // implementations for structures - needed if self-contained, and these should be included last
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/NonlinearOptimizer.h>
 | |
| #include <gtsam/linear/GaussianSequentialSolver.h>
 | |
| #include <gtsam/linear/GaussianMultifrontalSolver.h>
 | |
| 
 | |
| // Main typedefs
 | |
| typedef gtsam::NonlinearOptimizer<gtsam::NonlinearFactorGraph,gtsam::GaussianFactorGraph,gtsam::GaussianSequentialSolver> OptimizerSeqential;   // optimization engine for this domain
 | |
| typedef gtsam::NonlinearOptimizer<gtsam::NonlinearFactorGraph,gtsam::GaussianFactorGraph,gtsam::GaussianMultifrontalSolver> OptimizerMultifrontal;   // optimization engine for this domain
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| /**
 | |
|  * In this version of the system we make the following assumptions:
 | |
|  *  - All values are axis aligned
 | |
|  *  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | |
|  *  - We have bearing and range information for measurements
 | |
|  *  - We have full odometry for measurements
 | |
|  *  - The robot and landmarks are on a grid, moving 2 meters each step
 | |
|  *  - Landmarks are 2 meters away from the robot trajectory
 | |
|  */
 | |
| int main(int argc, char** argv) {
 | |
| 	// create keys for variables
 | |
| 	Symbol x1('x',1), x2('x',2), x3('x',3);
 | |
| 	Symbol l1('l',1), l2('l',2);
 | |
| 
 | |
| 	// create graph container and add factors to it
 | |
| 	NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
 | |
| 
 | |
| 	/* add prior  */
 | |
| 	// gaussian for prior
 | |
| 	SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
 | |
| 	Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
 | |
| 	PriorFactor<Pose2> posePrior(x1, prior_measurement, prior_model); // create the factor
 | |
| 	graph->add(posePrior);  // add the factor to the graph
 | |
| 
 | |
| 	/* add odometry */
 | |
| 	// general noisemodel for odometry
 | |
| 	SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
 | |
| 	Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | |
| 	// create between factors to represent odometry
 | |
| 	BetweenFactor<Pose2> odom12(x1, x2, odom_measurement, odom_model);
 | |
| 	BetweenFactor<Pose2> odom23(x2, x3, odom_measurement, odom_model);
 | |
| 	graph->add(odom12); // add both to graph
 | |
| 	graph->add(odom23);
 | |
| 
 | |
| 	/* add measurements */
 | |
| 	// general noisemodel for measurements
 | |
| 	SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2));
 | |
| 
 | |
| 	// create the measurement values - indices are (pose id, landmark id)
 | |
| 	Rot2 bearing11 = Rot2::fromDegrees(45),
 | |
| 		 bearing21 = Rot2::fromDegrees(90),
 | |
| 		 bearing32 = Rot2::fromDegrees(90);
 | |
| 	double range11 = sqrt(4+4),
 | |
| 		   range21 = 2.0,
 | |
| 		   range32 = 2.0;
 | |
| 
 | |
| 	// create bearing/range factors
 | |
| 	BearingRangeFactor<Pose2, Point2> meas11(x1, l1, bearing11, range11, meas_model);
 | |
| 	BearingRangeFactor<Pose2, Point2> meas21(x2, l1, bearing21, range21, meas_model);
 | |
| 	BearingRangeFactor<Pose2, Point2> meas32(x3, l2, bearing32, range32, meas_model);
 | |
| 
 | |
| 	// add the factors
 | |
| 	graph->add(meas11);
 | |
| 	graph->add(meas21);
 | |
| 	graph->add(meas32);
 | |
| 
 | |
| 	graph->print("Full Graph");
 | |
| 
 | |
| 	// initialize to noisy points
 | |
| 	boost::shared_ptr<Values> initial(new Values);
 | |
| 	initial->insert(x1, Pose2(0.5, 0.0, 0.2));
 | |
| 	initial->insert(x2, Pose2(2.3, 0.1,-0.2));
 | |
| 	initial->insert(x3, Pose2(4.1, 0.1, 0.1));
 | |
| 	initial->insert(l1, Point2(1.8, 2.1));
 | |
| 	initial->insert(l2, Point2(4.1, 1.8));
 | |
| 
 | |
| 	initial->print("initial estimate");
 | |
| 
 | |
| 	// optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | |
| 
 | |
| 	// first using sequential elimination
 | |
| 	OptimizerSeqential::shared_values resultSequential = OptimizerSeqential::optimizeLM(*graph, *initial);
 | |
| 	resultSequential->print("final result (solved with a sequential solver)");
 | |
| 
 | |
| 	// then using multifrontal, advanced interface
 | |
| 	// Note how we create an optimizer, call LM, then we get access to covariances
 | |
| 	Ordering::shared_ptr ordering = graph->orderingCOLAMD(*initial);
 | |
|   OptimizerMultifrontal optimizerMF(graph, initial, ordering);
 | |
|   OptimizerMultifrontal resultMF = optimizerMF.levenbergMarquardt();
 | |
|   resultMF.values()->print("final result (solved with a multifrontal solver)");
 | |
| 
 | |
|   // Print marginals covariances for all variables
 | |
|   print(resultMF.marginalCovariance(x1), "x1 covariance");
 | |
|   print(resultMF.marginalCovariance(x2), "x2 covariance");
 | |
|   print(resultMF.marginalCovariance(x3), "x3 covariance");
 | |
|   print(resultMF.marginalCovariance(l1), "l1 covariance");
 | |
|   print(resultMF.marginalCovariance(l2), "l2 covariance");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 |