148 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    matlab.h
 | |
|  * @brief   Contains *generic* global functions designed particularly for the matlab interface
 | |
|  * @author  Stephen Williams
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/geometry/Point3.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/geometry/Cal3_S2.h>
 | |
| #include <gtsam/geometry/SimpleCamera.h>
 | |
| 
 | |
| #include <exception>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   namespace utilities {
 | |
| 
 | |
|     /// Extract all Point2 values into a single matrix [x y]
 | |
|     Matrix extractPoint2(const Values& values) {
 | |
|       size_t j=0;
 | |
|       Values::ConstFiltered<Point2> points = values.filter<Point2>();
 | |
|       Matrix result(points.size(),2);
 | |
|       BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& key_value, points)
 | |
|         result.row(j++) = key_value.value.vector();
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     /// Extract all Point3 values into a single matrix [x y z]
 | |
|     Matrix extractPoint3(const Values& values) {
 | |
|       Values::ConstFiltered<Point3> points = values.filter<Point3>();
 | |
|       Matrix result(points.size(),3);
 | |
|       size_t j=0;
 | |
|       BOOST_FOREACH(const Values::ConstFiltered<Point3>::KeyValuePair& key_value, points)
 | |
|         result.row(j++) = key_value.value.vector();
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     /// Extract all Pose2 values into a single matrix [x y theta]
 | |
|     Matrix extractPose2(const Values& values) {
 | |
|       Values::ConstFiltered<Pose2> poses = values.filter<Pose2>();
 | |
|       Matrix result(poses.size(),3);
 | |
|       size_t j=0;
 | |
|       BOOST_FOREACH(const Values::ConstFiltered<Pose2>::KeyValuePair& key_value, poses)
 | |
|         result.row(j++) << key_value.value.x(), key_value.value.y(), key_value.value.theta();
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     /// Extract all Pose3 values
 | |
|     Values allPose3s(const Values& values) {
 | |
|       return values.filter<Pose3>();
 | |
|     }
 | |
| 
 | |
|     /// Extract all Pose3 values into a single matrix [r11 r12 r13 r21 r22 r23 r31 r32 r33 x y z]
 | |
|     Matrix extractPose3(const Values& values) {
 | |
|       Values::ConstFiltered<Pose3> poses = values.filter<Pose3>();
 | |
|       Matrix result(poses.size(),12);
 | |
|       size_t j=0;
 | |
|       BOOST_FOREACH(const Values::ConstFiltered<Pose3>::KeyValuePair& key_value, poses) {
 | |
|         result.row(j).segment(0, 3) << key_value.value.rotation().matrix().row(0);
 | |
|         result.row(j).segment(3, 3) << key_value.value.rotation().matrix().row(1);
 | |
|         result.row(j).segment(6, 3) << key_value.value.rotation().matrix().row(2);
 | |
|         result.row(j).tail(3) = key_value.value.translation().vector();
 | |
|         j++;
 | |
|       }
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     /// perturb all Point2 using normally distributed noise
 | |
|     void perturbPoint2(Values& values, double sigma, int32_t seed = 42u) {
 | |
|       noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,sigma);
 | |
|       Sampler sampler(model, seed);
 | |
|       BOOST_FOREACH(const Values::ConstFiltered<Point2>::KeyValuePair& key_value, values.filter<Point2>()) {
 | |
|         values.update(key_value.key, key_value.value.retract(sampler.sample()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// perturb all Point3 using normally distributed noise
 | |
|     void perturbPoint3(Values& values, double sigma, int32_t seed = 42u) {
 | |
|       noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,sigma);
 | |
|       Sampler sampler(model, seed);
 | |
|       BOOST_FOREACH(const Values::ConstFiltered<Point3>::KeyValuePair& key_value, values.filter<Point3>()) {
 | |
|         values.update(key_value.key, key_value.value.retract(sampler.sample()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// insert a number of initial point values by backprojecting
 | |
|     void insertBackprojections(Values& values, const SimpleCamera& camera, const Vector& J, const Matrix& Z, double depth) {
 | |
|       if (Z.rows() != 2) throw std::invalid_argument("insertBackProjections: Z must be 2*K");
 | |
|       if (Z.cols() != J.size()) throw std::invalid_argument("insertBackProjections: J and Z must have same number of entries");
 | |
|       for(int k=0;k<Z.cols();k++) {
 | |
|         Point2 p(Z(0,k),Z(1,k));
 | |
|         Point3 P = camera.backproject(p, depth);
 | |
|         values.insert(J(k), P);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// insert multiple projection factors for a single pose key
 | |
|     void insertProjectionFactors(NonlinearFactorGraph& graph, Key i, const Vector& J, const Matrix& Z,
 | |
|         const SharedNoiseModel& model, const Cal3_S2::shared_ptr K, const Pose3& body_P_sensor = Pose3()) {
 | |
|       if (Z.rows() != 2) throw std::invalid_argument("addMeasurements: Z must be 2*K");
 | |
|       if (Z.cols() != J.size()) throw std::invalid_argument(
 | |
|             "addMeasurements: J and Z must have same number of entries");
 | |
|       for (int k = 0; k < Z.cols(); k++) {
 | |
|         graph.push_back(
 | |
|             boost::make_shared<GenericProjectionFactor<Pose3, Point3> >
 | |
|             (Point2(Z(0, k), Z(1, k)), model, i, Key(J(k)), K, body_P_sensor));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// calculate the errors of all projection factors in a graph
 | |
|     Matrix reprojectionErrors(const NonlinearFactorGraph& graph, const Values& values) {
 | |
|       // first count
 | |
|       size_t K = 0, k=0;
 | |
|       BOOST_FOREACH(const NonlinearFactor::shared_ptr& f, graph)
 | |
|         if (boost::dynamic_pointer_cast<const GenericProjectionFactor<Pose3, Point3> >(f)) ++K;
 | |
|       // now fill
 | |
|       Matrix errors(2,K);
 | |
|       BOOST_FOREACH(const NonlinearFactor::shared_ptr& f, graph) {
 | |
|         boost::shared_ptr<const GenericProjectionFactor<Pose3, Point3> > p = boost::dynamic_pointer_cast<const GenericProjectionFactor<Pose3, Point3> >(f);
 | |
|         if (p) errors.col(k++) = p->unwhitenedError(values);
 | |
|       }
 | |
|       return errors;
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 |