54 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			54 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Read graph from file and perform GraphSLAM
 | |
| % @author Frank Dellaert
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| import gtsam.*
 | |
| 
 | |
| %% Create a hexagon of poses
 | |
| hexagon = circlePose2(6,1.0);
 | |
| p0 = hexagon.atPose2(0);
 | |
| p1 = hexagon.atPose2(1);
 | |
| 
 | |
| %% create a Pose graph with one equality constraint and one measurement
 | |
| fg = NonlinearFactorGraph;
 | |
| fg.add(NonlinearEqualityPose2(0, p0));
 | |
| delta = p0.between(p1);
 | |
| covariance = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
 | |
| fg.add(BetweenFactorPose2(0,1, delta, covariance));
 | |
| fg.add(BetweenFactorPose2(1,2, delta, covariance));
 | |
| fg.add(BetweenFactorPose2(2,3, delta, covariance));
 | |
| fg.add(BetweenFactorPose2(3,4, delta, covariance));
 | |
| fg.add(BetweenFactorPose2(4,5, delta, covariance));
 | |
| fg.add(BetweenFactorPose2(5,0, delta, covariance));
 | |
| 
 | |
| %% Create initial config
 | |
| initial = Values;
 | |
| initial.insert(0, p0);
 | |
| initial.insert(1, hexagon.atPose2(1).retract([-0.1, 0.1,-0.1]'));
 | |
| initial.insert(2, hexagon.atPose2(2).retract([ 0.1,-0.1, 0.1]'));
 | |
| initial.insert(3, hexagon.atPose2(3).retract([-0.1, 0.1,-0.1]'));
 | |
| initial.insert(4, hexagon.atPose2(4).retract([ 0.1,-0.1, 0.1]'));
 | |
| initial.insert(5, hexagon.atPose2(5).retract([-0.1, 0.1,-0.1]'));
 | |
| 
 | |
| %% Plot Initial Estimate
 | |
| cla
 | |
| plot2DTrajectory(initial, 'g*-'); axis equal
 | |
| 
 | |
| %% optimize
 | |
| optimizer = DoglegOptimizer(fg, initial);
 | |
| result = optimizer.optimizeSafely;
 | |
| 
 | |
| %% Show Result
 | |
| hold on; plot2DTrajectory(result, 'b*-');
 | |
| view(2);
 | |
| axis([-1.5 1.5 -1.5 1.5]);
 | |
| result.print(sprintf('\nFinal result:\n'));
 |