85 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Matlab
		
	
	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
% GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
% Atlanta, Georgia 30332-0415
 | 
						|
% All Rights Reserved
 | 
						|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
% 
 | 
						|
% See LICENSE for the license information
 | 
						|
%
 | 
						|
% @brief An SFM example (adapted from SFMExample.m) optimizing calibration
 | 
						|
% @author Yong-Dian Jian
 | 
						|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
 | 
						|
import gtsam.*
 | 
						|
 | 
						|
%% Assumptions
 | 
						|
%  - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc...
 | 
						|
%  - Cameras are on a circle around the cube, pointing at the world origin
 | 
						|
%  - Each camera sees all landmarks. 
 | 
						|
%  - Visual measurements as 2D points are given, corrupted by Gaussian noise.
 | 
						|
 | 
						|
% Data Options
 | 
						|
options.triangle = false;
 | 
						|
options.nrCameras = 10;
 | 
						|
options.showImages = false;
 | 
						|
 | 
						|
%% Generate data
 | 
						|
[data,truth] = VisualISAMGenerateData(options);
 | 
						|
 | 
						|
measurementNoiseSigma = 1.0;
 | 
						|
pointNoiseSigma = 0.1;
 | 
						|
cameraNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1 ...
 | 
						|
                     0.001*ones(1,5)]';
 | 
						|
 | 
						|
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
 | 
						|
graph = NonlinearFactorGraph;
 | 
						|
 | 
						|
 
 | 
						|
%% Add factors for all measurements
 | 
						|
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
 | 
						|
for i=1:length(data.Z)
 | 
						|
    for k=1:length(data.Z{i})
 | 
						|
        j = data.J{i}{k};
 | 
						|
        graph.add(GeneralSFMFactorCal3_S2(data.Z{i}{k}, measurementNoise, symbol('c',i), symbol('p',j)));
 | 
						|
    end
 | 
						|
end
 | 
						|
 | 
						|
%% Add Gaussian priors for a pose and a landmark to constrain the system
 | 
						|
cameraPriorNoise  = noiseModel.Diagonal.Sigmas(cameraNoiseSigmas);
 | 
						|
firstCamera = SimpleCamera(truth.cameras{1}.pose, truth.K);
 | 
						|
graph.add(PriorFactorSimpleCamera(symbol('c',1), firstCamera, cameraPriorNoise));
 | 
						|
 | 
						|
pointPriorNoise  = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
 | 
						|
graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise));
 | 
						|
 | 
						|
%% Print the graph
 | 
						|
graph.print(sprintf('\nFactor graph:\n'));
 | 
						|
 | 
						|
 | 
						|
%% Initialize cameras and points close to ground truth in this example
 | 
						|
initialEstimate = Values;
 | 
						|
for i=1:size(truth.cameras,2)
 | 
						|
    pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1));
 | 
						|
    camera_i = SimpleCamera(pose_i, truth.K);
 | 
						|
    initialEstimate.insert(symbol('c',i), camera_i);
 | 
						|
end
 | 
						|
for j=1:size(truth.points,2)
 | 
						|
    point_j = Point3(truth.points{j}.vector() + 0.1*randn(3,1));
 | 
						|
    initialEstimate.insert(symbol('p',j), point_j);
 | 
						|
end
 | 
						|
initialEstimate.print(sprintf('\nInitial estimate:\n  '));
 | 
						|
 | 
						|
%% Fine grain optimization, allowing user to iterate step by step
 | 
						|
parameters = LevenbergMarquardtParams;
 | 
						|
parameters.setlambdaInitial(1.0);
 | 
						|
parameters.setVerbosityLM('trylambda');
 | 
						|
 | 
						|
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate, parameters);
 | 
						|
 | 
						|
for i=1:5
 | 
						|
    optimizer.iterate();
 | 
						|
end
 | 
						|
 | 
						|
result = optimizer.values();
 | 
						|
result.print(sprintf('\nFinal result:\n  '));
 |