72 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
function [noiseModels,isam,result,nextPoseIndex] = VisualISAMInitialize(data,truth,options)
 | 
						|
% VisualISAMInitialize initializes visualSLAM::iSAM object and noise parameters
 | 
						|
% Authors: Duy Nguyen Ta, Frank Dellaert and Alex Cunningham
 | 
						|
 | 
						|
import gtsam.*
 | 
						|
 | 
						|
%% Initialize iSAM
 | 
						|
params = gtsam.ISAM2Params;
 | 
						|
if options.alwaysRelinearize
 | 
						|
    params.relinearizeSkip = 1;
 | 
						|
end
 | 
						|
isam = ISAM2(params);
 | 
						|
 | 
						|
%% Set Noise parameters
 | 
						|
noiseModels.pose = noiseModel.Diagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]', true);
 | 
						|
%noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
 | 
						|
noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.05 0.05 0.05 0.2 0.2 0.2]', true);
 | 
						|
noiseModels.point = noiseModel.Isotropic.Sigma(3, 0.1, true);
 | 
						|
noiseModels.measurement = noiseModel.Isotropic.Sigma(2, 1.0, true);
 | 
						|
 | 
						|
%% Add constraints/priors
 | 
						|
% TODO: should not be from ground truth!
 | 
						|
newFactors = NonlinearFactorGraph;
 | 
						|
initialEstimates = Values;
 | 
						|
for i=1:2
 | 
						|
    ii = symbol('x',i);
 | 
						|
    if i==1
 | 
						|
        if options.hardConstraint % add hard constraint
 | 
						|
            newFactors.add(NonlinearEqualityPose3(ii,truth.cameras{1}.pose));
 | 
						|
        else
 | 
						|
            newFactors.add(PriorFactorPose3(ii,truth.cameras{i}.pose, noiseModels.pose));
 | 
						|
        end
 | 
						|
    end
 | 
						|
    initialEstimates.insert(ii,truth.cameras{i}.pose);
 | 
						|
end
 | 
						|
 | 
						|
nextPoseIndex = 3;
 | 
						|
 | 
						|
%% Add visual measurement factors from two first poses and initialize observed landmarks
 | 
						|
for i=1:2
 | 
						|
    ii = symbol('x',i);
 | 
						|
    for k=1:length(data.Z{i})
 | 
						|
        j = data.J{i}{k};
 | 
						|
        jj = symbol('l',data.J{i}{k});
 | 
						|
        newFactors.add(GenericProjectionFactorCal3_S2(data.Z{i}{k}, noiseModels.measurement, ii, jj, data.K));
 | 
						|
        % TODO: initial estimates should not be from ground truth!
 | 
						|
        if ~initialEstimates.exists(jj)
 | 
						|
            initialEstimates.insert(jj, truth.points{j});
 | 
						|
        end
 | 
						|
        if options.pointPriors % add point priors
 | 
						|
            newFactors.add(PriorFactorPoint3(jj, truth.points{j}, noiseModels.point));
 | 
						|
        end
 | 
						|
    end
 | 
						|
end
 | 
						|
 | 
						|
%% Add odometry between frames 1 and 2
 | 
						|
newFactors.add(BetweenFactorPose3(symbol('x',1), symbol('x',2), data.odometry{1}, noiseModels.odometry));
 | 
						|
 | 
						|
%% Update ISAM
 | 
						|
if options.batchInitialization % Do a full optimize for first two poses
 | 
						|
    batchOptimizer = LevenbergMarquardtOptimizer(newFactors, initialEstimates);
 | 
						|
    fullyOptimized = batchOptimizer.optimize();
 | 
						|
    isam.update(newFactors, fullyOptimized);
 | 
						|
else
 | 
						|
    isam.update(newFactors, initialEstimates);
 | 
						|
end
 | 
						|
% figure(1);tic;
 | 
						|
% t=toc; plot(frame_i,t,'r.'); tic
 | 
						|
result = isam.calculateEstimate();
 | 
						|
% t=toc; plot(frame_i,t,'g.');
 | 
						|
 |