671 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			671 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
| // Ceres Solver - A fast non-linear least squares minimizer
 | |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 | |
| // http://code.google.com/p/ceres-solver/
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are met:
 | |
| //
 | |
| // * Redistributions of source code must retain the above copyright notice,
 | |
| //   this list of conditions and the following disclaimer.
 | |
| // * Redistributions in binary form must reproduce the above copyright notice,
 | |
| //   this list of conditions and the following disclaimer in the documentation
 | |
| //   and/or other materials provided with the distribution.
 | |
| // * Neither the name of Google Inc. nor the names of its contributors may be
 | |
| //   used to endorse or promote products derived from this software without
 | |
| //   specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| // POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // Author: keir@google.com (Keir Mierle)
 | |
| //
 | |
| // A simple implementation of N-dimensional dual numbers, for automatically
 | |
| // computing exact derivatives of functions.
 | |
| //
 | |
| // While a complete treatment of the mechanics of automatic differentation is
 | |
| // beyond the scope of this header (see
 | |
| // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
 | |
| // basic idea is to extend normal arithmetic with an extra element, "e," often
 | |
| // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
 | |
| // numbers are extensions of the real numbers analogous to complex numbers:
 | |
| // whereas complex numbers augment the reals by introducing an imaginary unit i
 | |
| // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
 | |
| // that e^2 = 0. Dual numbers have two components: the "real" component and the
 | |
| // "infinitesimal" component, generally written as x + y*e. Surprisingly, this
 | |
| // leads to a convenient method for computing exact derivatives without needing
 | |
| // to manipulate complicated symbolic expressions.
 | |
| //
 | |
| // For example, consider the function
 | |
| //
 | |
| //   f(x) = x^2 ,
 | |
| //
 | |
| // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
 | |
| // Next, augument 10 with an infinitesimal to get:
 | |
| //
 | |
| //   f(10 + e) = (10 + e)^2
 | |
| //             = 100 + 2 * 10 * e + e^2
 | |
| //             = 100 + 20 * e       -+-
 | |
| //                     --            |
 | |
| //                     |             +--- This is zero, since e^2 = 0
 | |
| //                     |
 | |
| //                     +----------------- This is df/dx!
 | |
| //
 | |
| // Note that the derivative of f with respect to x is simply the infinitesimal
 | |
| // component of the value of f(x + e). So, in order to take the derivative of
 | |
| // any function, it is only necessary to replace the numeric "object" used in
 | |
| // the function with one extended with infinitesimals. The class Jet, defined in
 | |
| // this header, is one such example of this, where substitution is done with
 | |
| // templates.
 | |
| //
 | |
| // To handle derivatives of functions taking multiple arguments, different
 | |
| // infinitesimals are used, one for each variable to take the derivative of. For
 | |
| // example, consider a scalar function of two scalar parameters x and y:
 | |
| //
 | |
| //   f(x, y) = x^2 + x * y
 | |
| //
 | |
| // Following the technique above, to compute the derivatives df/dx and df/dy for
 | |
| // f(1, 3) involves doing two evaluations of f, the first time replacing x with
 | |
| // x + e, the second time replacing y with y + e.
 | |
| //
 | |
| // For df/dx:
 | |
| //
 | |
| //   f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
 | |
| //               = 1 + 2 * e + 3 + 3 * e
 | |
| //               = 4 + 5 * e
 | |
| //
 | |
| //               --> df/dx = 5
 | |
| //
 | |
| // For df/dy:
 | |
| //
 | |
| //   f(1, 3 + e) = 1^2 + 1 * (3 + e)
 | |
| //               = 1 + 3 + e
 | |
| //               = 4 + e
 | |
| //
 | |
| //               --> df/dy = 1
 | |
| //
 | |
| // To take the gradient of f with the implementation of dual numbers ("jets") in
 | |
| // this file, it is necessary to create a single jet type which has components
 | |
| // for the derivative in x and y, and passing them to a templated version of f:
 | |
| //
 | |
| //   template<typename T>
 | |
| //   T f(const T &x, const T &y) {
 | |
| //     return x * x + x * y;
 | |
| //   }
 | |
| //
 | |
| //   // The "2" means there should be 2 dual number components.
 | |
| //   Jet<double, 2> x(0);  // Pick the 0th dual number for x.
 | |
| //   Jet<double, 2> y(1);  // Pick the 1st dual number for y.
 | |
| //   Jet<double, 2> z = f(x, y);
 | |
| //
 | |
| //   LOG(INFO) << "df/dx = " << z.a[0]
 | |
| //             << "df/dy = " << z.a[1];
 | |
| //
 | |
| // Most users should not use Jet objects directly; a wrapper around Jet objects,
 | |
| // which makes computing the derivative, gradient, or jacobian of templated
 | |
| // functors simple, is in autodiff.h. Even autodiff.h should not be used
 | |
| // directly; instead autodiff_cost_function.h is typically the file of interest.
 | |
| //
 | |
| // For the more mathematically inclined, this file implements first-order
 | |
| // "jets". A 1st order jet is an element of the ring
 | |
| //
 | |
| //   T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
 | |
| //
 | |
| // which essentially means that each jet consists of a "scalar" value 'a' from T
 | |
| // and a 1st order perturbation vector 'v' of length N:
 | |
| //
 | |
| //   x = a + \sum_i v[i] t_i
 | |
| //
 | |
| // A shorthand is to write an element as x = a + u, where u is the pertubation.
 | |
| // Then, the main point about the arithmetic of jets is that the product of
 | |
| // perturbations is zero:
 | |
| //
 | |
| //   (a + u) * (b + v) = ab + av + bu + uv
 | |
| //                     = ab + (av + bu) + 0
 | |
| //
 | |
| // which is what operator* implements below. Addition is simpler:
 | |
| //
 | |
| //   (a + u) + (b + v) = (a + b) + (u + v).
 | |
| //
 | |
| // The only remaining question is how to evaluate the function of a jet, for
 | |
| // which we use the chain rule:
 | |
| //
 | |
| //   f(a + u) = f(a) + f'(a) u
 | |
| //
 | |
| // where f'(a) is the (scalar) derivative of f at a.
 | |
| //
 | |
| // By pushing these things through sufficiently and suitably templated
 | |
| // functions, we can do automatic differentiation. Just be sure to turn on
 | |
| // function inlining and common-subexpression elimination, or it will be very
 | |
| // slow!
 | |
| //
 | |
| // WARNING: Most Ceres users should not directly include this file or know the
 | |
| // details of how jets work. Instead the suggested method for automatic
 | |
| // derivatives is to use autodiff_cost_function.h, which is a wrapper around
 | |
| // both jets.h and autodiff.h to make taking derivatives of cost functions for
 | |
| // use in Ceres easier.
 | |
| 
 | |
| #ifndef CERES_PUBLIC_JET_H_
 | |
| #define CERES_PUBLIC_JET_H_
 | |
| 
 | |
| #include <cmath>
 | |
| #include <iosfwd>
 | |
| #include <iostream>  // NOLINT
 | |
| #include <limits>
 | |
| #include <string>
 | |
| 
 | |
| #include <gtsam/3rdparty/gtsam_eigen_includes.h>
 | |
| #include <gtsam_unstable/nonlinear/ceres_fpclassify.h>
 | |
| 
 | |
| namespace ceres {
 | |
| 
 | |
| template <typename T, int N>
 | |
| struct Jet {
 | |
|   enum { DIMENSION = N };
 | |
| 
 | |
|   // Default-construct "a" because otherwise this can lead to false errors about
 | |
|   // uninitialized uses when other classes relying on default constructed T
 | |
|   // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
 | |
|   // the C++ standard mandates that e.g. default constructed doubles are
 | |
|   // initialized to 0.0; see sections 8.5 of the C++03 standard.
 | |
|   Jet() : a() {
 | |
|     v.setZero();
 | |
|   }
 | |
| 
 | |
|   // Constructor from scalar: a + 0.
 | |
|   explicit Jet(const T& value) {
 | |
|     a = value;
 | |
|     v.setZero();
 | |
|   }
 | |
| 
 | |
|   // Constructor from scalar plus variable: a + t_i.
 | |
|   Jet(const T& value, int k) {
 | |
|     a = value;
 | |
|     v.setZero();
 | |
|     v[k] = T(1.0);
 | |
|   }
 | |
| 
 | |
|   // Constructor from scalar and vector part
 | |
|   // The use of Eigen::DenseBase allows Eigen expressions
 | |
|   // to be passed in without being fully evaluated until
 | |
|   // they are assigned to v
 | |
|   template<typename Derived>
 | |
|   EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v)
 | |
|       : a(a), v(v) {
 | |
|   }
 | |
| 
 | |
|   // Compound operators
 | |
|   Jet<T, N>& operator+=(const Jet<T, N> &y) {
 | |
|     *this = *this + y;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   Jet<T, N>& operator-=(const Jet<T, N> &y) {
 | |
|     *this = *this - y;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   Jet<T, N>& operator*=(const Jet<T, N> &y) {
 | |
|     *this = *this * y;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   Jet<T, N>& operator/=(const Jet<T, N> &y) {
 | |
|     *this = *this / y;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // The scalar part.
 | |
|   T a;
 | |
| 
 | |
|   // The infinitesimal part.
 | |
|   //
 | |
|   // Note the Eigen::DontAlign bit is needed here because this object
 | |
|   // gets allocated on the stack and as part of other arrays and
 | |
|   // structs. Forcing the right alignment there is the source of much
 | |
|   // pain and suffering. Even if that works, passing Jets around to
 | |
|   // functions by value has problems because the C++ ABI does not
 | |
|   // guarantee alignment for function arguments.
 | |
|   //
 | |
|   // Setting the DontAlign bit prevents Eigen from using SSE for the
 | |
|   // various operations on Jets. This is a small performance penalty
 | |
|   // since the AutoDiff code will still expose much of the code as
 | |
|   // statically sized loops to the compiler. But given the subtle
 | |
|   // issues that arise due to alignment, especially when dealing with
 | |
|   // multiple platforms, it seems to be a trade off worth making.
 | |
|   Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
 | |
| };
 | |
| 
 | |
| // Unary +
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> const& operator+(const Jet<T, N>& f) {
 | |
|   return f;
 | |
| }
 | |
| 
 | |
| // TODO(keir): Try adding __attribute__((always_inline)) to these functions to
 | |
| // see if it causes a performance increase.
 | |
| 
 | |
| // Unary -
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator-(const Jet<T, N>&f) {
 | |
|   return Jet<T, N>(-f.a, -f.v);
 | |
| }
 | |
| 
 | |
| // Binary +
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator+(const Jet<T, N>& f,
 | |
|                     const Jet<T, N>& g) {
 | |
|   return Jet<T, N>(f.a + g.a, f.v + g.v);
 | |
| }
 | |
| 
 | |
| // Binary + with a scalar: x + s
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator+(const Jet<T, N>& f, T s) {
 | |
|   return Jet<T, N>(f.a + s, f.v);
 | |
| }
 | |
| 
 | |
| // Binary + with a scalar: s + x
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator+(T s, const Jet<T, N>& f) {
 | |
|   return Jet<T, N>(f.a + s, f.v);
 | |
| }
 | |
| 
 | |
| // Binary -
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator-(const Jet<T, N>& f,
 | |
|                     const Jet<T, N>& g) {
 | |
|   return Jet<T, N>(f.a - g.a, f.v - g.v);
 | |
| }
 | |
| 
 | |
| // Binary - with a scalar: x - s
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator-(const Jet<T, N>& f, T s) {
 | |
|   return Jet<T, N>(f.a - s, f.v);
 | |
| }
 | |
| 
 | |
| // Binary - with a scalar: s - x
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator-(T s, const Jet<T, N>& f) {
 | |
|   return Jet<T, N>(s - f.a, -f.v);
 | |
| }
 | |
| 
 | |
| // Binary *
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator*(const Jet<T, N>& f,
 | |
|                     const Jet<T, N>& g) {
 | |
|   return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
 | |
| }
 | |
| 
 | |
| // Binary * with a scalar: x * s
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator*(const Jet<T, N>& f, T s) {
 | |
|   return Jet<T, N>(f.a * s, f.v * s);
 | |
| }
 | |
| 
 | |
| // Binary * with a scalar: s * x
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator*(T s, const Jet<T, N>& f) {
 | |
|   return Jet<T, N>(f.a * s, f.v * s);
 | |
| }
 | |
| 
 | |
| // Binary /
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator/(const Jet<T, N>& f,
 | |
|                     const Jet<T, N>& g) {
 | |
|   // This uses:
 | |
|   //
 | |
|   //   a + u   (a + u)(b - v)   (a + u)(b - v)
 | |
|   //   ----- = -------------- = --------------
 | |
|   //   b + v   (b + v)(b - v)        b^2
 | |
|   //
 | |
|   // which holds because v*v = 0.
 | |
|   const T g_a_inverse = T(1.0) / g.a;
 | |
|   const T f_a_by_g_a = f.a * g_a_inverse;
 | |
|   return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
 | |
| }
 | |
| 
 | |
| // Binary / with a scalar: s / x
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator/(T s, const Jet<T, N>& g) {
 | |
|   const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
 | |
|   return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
 | |
| }
 | |
| 
 | |
| // Binary / with a scalar: x / s
 | |
| template<typename T, int N> inline
 | |
| Jet<T, N> operator/(const Jet<T, N>& f, T s) {
 | |
|   const T s_inverse = 1.0 / s;
 | |
|   return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
 | |
| }
 | |
| 
 | |
| // Binary comparison operators for both scalars and jets.
 | |
| #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
 | |
| template<typename T, int N> inline \
 | |
| bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
 | |
|   return f.a op g.a; \
 | |
| } \
 | |
| template<typename T, int N> inline \
 | |
| bool operator op(const T& s, const Jet<T, N>& g) { \
 | |
|   return s op g.a; \
 | |
| } \
 | |
| template<typename T, int N> inline \
 | |
| bool operator op(const Jet<T, N>& f, const T& s) { \
 | |
|   return f.a op s; \
 | |
| }
 | |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( <  )  // NOLINT
 | |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( <= )  // NOLINT
 | |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( >  )  // NOLINT
 | |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( >= )  // NOLINT
 | |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( == )  // NOLINT
 | |
| CERES_DEFINE_JET_COMPARISON_OPERATOR( != )  // NOLINT
 | |
| #undef CERES_DEFINE_JET_COMPARISON_OPERATOR
 | |
| 
 | |
| // Pull some functions from namespace std.
 | |
| //
 | |
| // This is necessary because we want to use the same name (e.g. 'sqrt') for
 | |
| // double-valued and Jet-valued functions, but we are not allowed to put
 | |
| // Jet-valued functions inside namespace std.
 | |
| //
 | |
| // TODO(keir): Switch to "using".
 | |
| inline double abs     (double x) { return std::abs(x);      }
 | |
| inline double log     (double x) { return std::log(x);      }
 | |
| inline double exp     (double x) { return std::exp(x);      }
 | |
| inline double sqrt    (double x) { return std::sqrt(x);     }
 | |
| inline double cos     (double x) { return std::cos(x);      }
 | |
| inline double acos    (double x) { return std::acos(x);     }
 | |
| inline double sin     (double x) { return std::sin(x);      }
 | |
| inline double asin    (double x) { return std::asin(x);     }
 | |
| inline double tan     (double x) { return std::tan(x);      }
 | |
| inline double atan    (double x) { return std::atan(x);     }
 | |
| inline double sinh    (double x) { return std::sinh(x);     }
 | |
| inline double cosh    (double x) { return std::cosh(x);     }
 | |
| inline double tanh    (double x) { return std::tanh(x);     }
 | |
| inline double pow  (double x, double y) { return std::pow(x, y);   }
 | |
| inline double atan2(double y, double x) { return std::atan2(y, x); }
 | |
| 
 | |
| // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
 | |
| 
 | |
| // abs(x + h) ~= x + h or -(x + h)
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> abs(const Jet<T, N>& f) {
 | |
|   return f.a < T(0.0) ? -f : f;
 | |
| }
 | |
| 
 | |
| // log(a + h) ~= log(a) + h / a
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> log(const Jet<T, N>& f) {
 | |
|   const T a_inverse = T(1.0) / f.a;
 | |
|   return Jet<T, N>(log(f.a), f.v * a_inverse);
 | |
| }
 | |
| 
 | |
| // exp(a + h) ~= exp(a) + exp(a) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> exp(const Jet<T, N>& f) {
 | |
|   const T tmp = exp(f.a);
 | |
|   return Jet<T, N>(tmp, tmp * f.v);
 | |
| }
 | |
| 
 | |
| // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> sqrt(const Jet<T, N>& f) {
 | |
|   const T tmp = sqrt(f.a);
 | |
|   const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
 | |
|   return Jet<T, N>(tmp, f.v * two_a_inverse);
 | |
| }
 | |
| 
 | |
| // cos(a + h) ~= cos(a) - sin(a) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> cos(const Jet<T, N>& f) {
 | |
|   return Jet<T, N>(cos(f.a), - sin(f.a) * f.v);
 | |
| }
 | |
| 
 | |
| // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> acos(const Jet<T, N>& f) {
 | |
|   const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
 | |
|   return Jet<T, N>(acos(f.a), tmp * f.v);
 | |
| }
 | |
| 
 | |
| // sin(a + h) ~= sin(a) + cos(a) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> sin(const Jet<T, N>& f) {
 | |
|   return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
 | |
| }
 | |
| 
 | |
| // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> asin(const Jet<T, N>& f) {
 | |
|   const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
 | |
|   return Jet<T, N>(asin(f.a), tmp * f.v);
 | |
| }
 | |
| 
 | |
| // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> tan(const Jet<T, N>& f) {
 | |
|   const T tan_a = tan(f.a);
 | |
|   const T tmp = T(1.0) + tan_a * tan_a;
 | |
|   return Jet<T, N>(tan_a, tmp * f.v);
 | |
| }
 | |
| 
 | |
| // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> atan(const Jet<T, N>& f) {
 | |
|   const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
 | |
|   return Jet<T, N>(atan(f.a), tmp * f.v);
 | |
| }
 | |
| 
 | |
| // sinh(a + h) ~= sinh(a) + cosh(a) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> sinh(const Jet<T, N>& f) {
 | |
|   return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
 | |
| }
 | |
| 
 | |
| // cosh(a + h) ~= cosh(a) + sinh(a) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> cosh(const Jet<T, N>& f) {
 | |
|   return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
 | |
| }
 | |
| 
 | |
| // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> tanh(const Jet<T, N>& f) {
 | |
|   const T tanh_a = tanh(f.a);
 | |
|   const T tmp = T(1.0) - tanh_a * tanh_a;
 | |
|   return Jet<T, N>(tanh_a, tmp * f.v);
 | |
| }
 | |
| 
 | |
| // Jet Classification. It is not clear what the appropriate semantics are for
 | |
| // these classifications. This picks that IsFinite and isnormal are "all"
 | |
| // operations, i.e. all elements of the jet must be finite for the jet itself
 | |
| // to be finite (or normal). For IsNaN and IsInfinite, the answer is less
 | |
| // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
 | |
| // part of a jet is nan or inf, then the entire jet is nan or inf. This leads
 | |
| // to strange situations like a jet can be both IsInfinite and IsNaN, but in
 | |
| // practice the "any" semantics are the most useful for e.g. checking that
 | |
| // derivatives are sane.
 | |
| 
 | |
| // The jet is finite if all parts of the jet are finite.
 | |
| template <typename T, int N> inline
 | |
| bool IsFinite(const Jet<T, N>& f) {
 | |
|   if (!IsFinite(f.a)) {
 | |
|     return false;
 | |
|   }
 | |
|   for (int i = 0; i < N; ++i) {
 | |
|     if (!IsFinite(f.v[i])) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // The jet is infinite if any part of the jet is infinite.
 | |
| template <typename T, int N> inline
 | |
| bool IsInfinite(const Jet<T, N>& f) {
 | |
|   if (IsInfinite(f.a)) {
 | |
|     return true;
 | |
|   }
 | |
|   for (int i = 0; i < N; i++) {
 | |
|     if (IsInfinite(f.v[i])) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The jet is NaN if any part of the jet is NaN.
 | |
| template <typename T, int N> inline
 | |
| bool IsNaN(const Jet<T, N>& f) {
 | |
|   if (IsNaN(f.a)) {
 | |
|     return true;
 | |
|   }
 | |
|   for (int i = 0; i < N; ++i) {
 | |
|     if (IsNaN(f.v[i])) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The jet is normal if all parts of the jet are normal.
 | |
| template <typename T, int N> inline
 | |
| bool IsNormal(const Jet<T, N>& f) {
 | |
|   if (!IsNormal(f.a)) {
 | |
|     return false;
 | |
|   }
 | |
|   for (int i = 0; i < N; ++i) {
 | |
|     if (!IsNormal(f.v[i])) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
 | |
| //
 | |
| // In words: the rate of change of theta is 1/r times the rate of
 | |
| // change of (x, y) in the positive angular direction.
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
 | |
|   // Note order of arguments:
 | |
|   //
 | |
|   //   f = a + da
 | |
|   //   g = b + db
 | |
| 
 | |
|   T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
 | |
|   return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v));
 | |
| }
 | |
| 
 | |
| 
 | |
| // pow -- base is a differentiable function, exponent is a constant.
 | |
| // (a+da)^p ~= a^p + p*a^(p-1) da
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> pow(const Jet<T, N>& f, double g) {
 | |
|   T const tmp = g * pow(f.a, g - T(1.0));
 | |
|   return Jet<T, N>(pow(f.a, g), tmp * f.v);
 | |
| }
 | |
| 
 | |
| // pow -- base is a constant, exponent is a differentiable function.
 | |
| // (a)^(p+dp) ~= a^p + a^p log(a) dp
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> pow(double f, const Jet<T, N>& g) {
 | |
|   T const tmp = pow(f, g.a);
 | |
|   return Jet<T, N>(tmp, log(f) * tmp * g.v);
 | |
| }
 | |
| 
 | |
| 
 | |
| // pow -- both base and exponent are differentiable functions.
 | |
| // (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db
 | |
| template <typename T, int N> inline
 | |
| Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
 | |
|   T const tmp1 = pow(f.a, g.a);
 | |
|   T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
 | |
|   T const tmp3 = tmp1 * log(f.a);
 | |
| 
 | |
|   return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
 | |
| }
 | |
| 
 | |
| // Define the helper functions Eigen needs to embed Jet types.
 | |
| //
 | |
| // NOTE(keir): machine_epsilon() and precision() are missing, because they don't
 | |
| // work with nested template types (e.g. where the scalar is itself templated).
 | |
| // Among other things, this means that decompositions of Jet's does not work,
 | |
| // for example
 | |
| //
 | |
| //   Matrix<Jet<T, N> ... > A, x, b;
 | |
| //   ...
 | |
| //   A.solve(b, &x)
 | |
| //
 | |
| // does not work and will fail with a strange compiler error.
 | |
| //
 | |
| // TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
 | |
| // switch to 3.0, also add the rest of the specialization functionality.
 | |
| template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x;              }  // NOLINT
 | |
| template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x;              }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_imag(const Jet<T, N>&  ) { return Jet<T, N>(0.0); }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_abs (const Jet<T, N>& x) { return fabs(x);        }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_abs2(const Jet<T, N>& x) { return x * x;          }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_sqrt(const Jet<T, N>& x) { return sqrt(x);        }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_exp (const Jet<T, N>& x) { return exp(x);         }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_log (const Jet<T, N>& x) { return log(x);         }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_sin (const Jet<T, N>& x) { return sin(x);         }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_cos (const Jet<T, N>& x) { return cos(x);         }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_tan (const Jet<T, N>& x) { return tan(x);         }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_atan(const Jet<T, N>& x) { return atan(x);        }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_sinh(const Jet<T, N>& x) { return sinh(x);        }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_cosh(const Jet<T, N>& x) { return cosh(x);        }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_tanh(const Jet<T, N>& x) { return tanh(x);        }  // NOLINT
 | |
| template<typename T, int N> inline       Jet<T, N>  ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); }  // NOLINT
 | |
| 
 | |
| // Note: This has to be in the ceres namespace for argument dependent lookup to
 | |
| // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
 | |
| // strange compile errors.
 | |
| template <typename T, int N>
 | |
| inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
 | |
|   return s << "[" << z.a << " ; " << z.v.transpose() << "]";
 | |
| }
 | |
| 
 | |
| }  // namespace ceres
 | |
| 
 | |
| namespace Eigen {
 | |
| 
 | |
| // Creating a specialization of NumTraits enables placing Jet objects inside
 | |
| // Eigen arrays, getting all the goodness of Eigen combined with autodiff.
 | |
| template<typename T, int N>
 | |
| struct NumTraits<ceres::Jet<T, N> > {
 | |
|   typedef ceres::Jet<T, N> Real;
 | |
|   typedef ceres::Jet<T, N> NonInteger;
 | |
|   typedef ceres::Jet<T, N> Nested;
 | |
| 
 | |
|   static typename ceres::Jet<T, N> dummy_precision() {
 | |
|     return ceres::Jet<T, N>(1e-12);
 | |
|   }
 | |
| 
 | |
|   static inline Real epsilon() {
 | |
|     return Real(std::numeric_limits<T>::epsilon());
 | |
|   }
 | |
| 
 | |
|   enum {
 | |
|     IsComplex = 0,
 | |
|     IsInteger = 0,
 | |
|     IsSigned,
 | |
|     ReadCost = 1,
 | |
|     AddCost = 1,
 | |
|     // For Jet types, multiplication is more expensive than addition.
 | |
|     MulCost = 3,
 | |
|     HasFloatingPoint = 1,
 | |
|     RequireInitialization = 1
 | |
|   };
 | |
| };
 | |
| 
 | |
| }  // namespace Eigen
 | |
| 
 | |
| #endif  // CERES_PUBLIC_JET_H_
 |