130 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    FisheyeExample.cpp
 | |
|  * @brief   A visualSLAM example for the structure-from-motion problem on a
 | |
|  * simulated dataset. This version uses a fisheye camera model and a GaussNewton
 | |
|  * solver to solve the graph in one batch
 | |
|  * @author  ghaggin
 | |
|  * @Date    Apr 9,2020
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * A structure-from-motion example with landmarks
 | |
|  *  - The landmarks form a 10 meter cube
 | |
|  *  - The robot rotates around the landmarks, always facing towards the cube
 | |
|  */
 | |
| 
 | |
| // For loading the data
 | |
| #include "SFMdata.h"
 | |
| 
 | |
| // Camera observations of landmarks will be stored as Point2 (x, y).
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| // Each variable in the system (poses and landmarks) must be identified with a
 | |
| // unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
 | |
| // (X1, X2, L1). Here we will use Symbols
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| // Use GaussNewtonOptimizer to solve graph
 | |
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| 
 | |
| // In GTSAM, measurement functions are represented as 'factors'. Several common
 | |
| // factors have been provided with the library for solving robotics/SLAM/Bundle
 | |
| // Adjustment problems. Here we will use Projection factors to model the
 | |
| // camera's landmark observations. Also, we will initialize the robot at some
 | |
| // location using a Prior factor.
 | |
| #include <gtsam/geometry/Cal3Fisheye.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| 
 | |
| #include <fstream>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| using symbol_shorthand::L;  // for landmarks
 | |
| using symbol_shorthand::X;  // for poses
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char *argv[]) {
 | |
|   // Define the camera calibration parameters
 | |
|   auto K = std::make_shared<Cal3Fisheye>(
 | |
|       278.66, 278.48, 0.0, 319.75, 241.96, -0.013721808247486035,
 | |
|       0.020727425669427896, -0.012786476702685545, 0.0025242267320687625);
 | |
| 
 | |
|   // Define the camera observation noise model, 1 pixel stddev
 | |
|   auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
 | |
| 
 | |
|   // Create the set of ground-truth landmarks
 | |
|   const vector<Point3> points = createPoints();
 | |
| 
 | |
|   // Create the set of ground-truth poses
 | |
|   const vector<Pose3> poses = createPoses();
 | |
| 
 | |
|   // Create a Factor Graph and Values to hold the new data
 | |
|   NonlinearFactorGraph graph;
 | |
|   Values initialEstimate;
 | |
| 
 | |
|   // Add a prior on pose x0, 0.1 rad on roll,pitch,yaw, and 30cm std on x,y,z
 | |
|   auto posePrior = noiseModel::Diagonal::Sigmas(
 | |
|       (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
 | |
|   graph.emplace_shared<PriorFactor<Pose3>>(X(0), poses[0], posePrior);
 | |
| 
 | |
|   // Add a prior on landmark l0
 | |
|   auto pointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
 | |
|   graph.emplace_shared<PriorFactor<Point3>>(L(0), points[0], pointPrior);
 | |
| 
 | |
|   // Add initial guesses to all observed landmarks
 | |
|   // Intentionally initialize the variables off from the ground truth
 | |
|   static const Point3 kDeltaPoint(-0.25, 0.20, 0.15);
 | |
|   for (size_t j = 0; j < points.size(); ++j)
 | |
|     initialEstimate.insert<Point3>(L(j), points[j] + kDeltaPoint);
 | |
| 
 | |
|   // Loop over the poses, adding the observations to the graph
 | |
|   for (size_t i = 0; i < poses.size(); ++i) {
 | |
|     // Add factors for each landmark observation
 | |
|     for (size_t j = 0; j < points.size(); ++j) {
 | |
|       PinholeCamera<Cal3Fisheye> camera(poses[i], *K);
 | |
|       Point2 measurement = camera.project(points[j]);
 | |
|       graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3Fisheye>>(
 | |
|           measurement, measurementNoise, X(i), L(j), K);
 | |
|     }
 | |
| 
 | |
|     // Add an initial guess for the current pose
 | |
|     // Intentionally initialize the variables off from the ground truth
 | |
|     static const Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
 | |
|                                   Point3(0.05, -0.10, 0.20));
 | |
|     initialEstimate.insert(X(i), poses[i] * kDeltaPose);
 | |
|   }
 | |
| 
 | |
|   GaussNewtonParams params;
 | |
|   params.setVerbosity("TERMINATION");
 | |
|   params.maxIterations = 10000;
 | |
| 
 | |
|   std::cout << "Optimizing the factor graph" << std::endl;
 | |
|   GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
 | |
|   Values result = optimizer.optimize();
 | |
|   std::cout << "Optimization complete" << std::endl;
 | |
| 
 | |
|   std::cout << "initial error=" << graph.error(initialEstimate) << std::endl;
 | |
|   std::cout << "final error=" << graph.error(result) << std::endl;
 | |
| 
 | |
|   graph.saveGraph("examples/vio_batch.dot", result);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 |