196 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    testPCGSolver.cpp
 | 
						|
 * @brief   Unit tests for PCGSolver class
 | 
						|
 * @author  Yong-Dian Jian
 | 
						|
 * @date    Aug 06, 2014
 | 
						|
 */
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/linear/PCGSolver.h>
 | 
						|
#include <gtsam/linear/SubgraphPreconditioner.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/shared_ptr.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <fstream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
const double tol = 1e-3;
 | 
						|
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test cholesky decomposition
 | 
						|
TEST( PCGSolver, llt ) {
 | 
						|
  Matrix R = (Matrix(3,3) <<
 | 
						|
                1., -1., -1.,
 | 
						|
                0.,  2., -1.,
 | 
						|
                0.,  0.,  1.).finished();
 | 
						|
  Matrix AtA = R.transpose() * R;
 | 
						|
 | 
						|
  Vector Rvector = (Vector(9) << 1., -1., -1.,
 | 
						|
                                 0.,  2., -1.,
 | 
						|
                                 0.,  0.,  1.).finished();
 | 
						|
//  Vector Rvector = (Vector(6) << 1., -1., -1.,
 | 
						|
//                                      2., -1.,
 | 
						|
//                                           1.).finished();
 | 
						|
 | 
						|
  Vector b = Vector3(1., 2., 3.);
 | 
						|
 | 
						|
  Vector x = Vector3(6.5, 2.5, 3.) ;
 | 
						|
 | 
						|
  /* test cholesky */
 | 
						|
  Matrix Rhat = AtA.llt().matrixL().transpose();
 | 
						|
  EXPECT(assert_equal(R, Rhat, 1e-5));
 | 
						|
 | 
						|
  /* test backward substitution */
 | 
						|
  Vector xhat = Rhat.triangularView<Eigen::Upper>().solve(b);
 | 
						|
  EXPECT(assert_equal(x, xhat, 1e-5));
 | 
						|
 | 
						|
  /* test in-place back substitution */
 | 
						|
  xhat = b;
 | 
						|
  Rhat.triangularView<Eigen::Upper>().solveInPlace(xhat);
 | 
						|
  EXPECT(assert_equal(x, xhat, 1e-5));
 | 
						|
 | 
						|
  /* test triangular matrix map */
 | 
						|
  Eigen::Map<Eigen::MatrixXd> Radapter(Rvector.data(), 3, 3);
 | 
						|
  xhat = Radapter.transpose().triangularView<Eigen::Upper>().solve(b);
 | 
						|
  EXPECT(assert_equal(x, xhat, 1e-5));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test GaussianFactorGraphSystem::multiply and getb
 | 
						|
TEST( GaussianFactorGraphSystem, multiply_getb)
 | 
						|
{
 | 
						|
  // Create a Gaussian Factor Graph
 | 
						|
  GaussianFactorGraph simpleGFG;
 | 
						|
  SharedDiagonal unit2 = noiseModel::Diagonal::Sigmas(Vector2(0.5, 0.3));
 | 
						|
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << -1, -1).finished(), unit2);
 | 
						|
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10).finished(), 0, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << 2, -1).finished(), unit2);
 | 
						|
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << 0, 1).finished(), unit2);
 | 
						|
  simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << -1, 1.5).finished(), unit2);
 | 
						|
  simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
 | 
						|
  simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
 | 
						|
  simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
 | 
						|
 | 
						|
  // Create a dummy-preconditioner and a GaussianFactorGraphSystem
 | 
						|
  DummyPreconditioner dummyPreconditioner;
 | 
						|
  KeyInfo keyInfo(simpleGFG);
 | 
						|
  std::map<Key,Vector> lambda;
 | 
						|
  dummyPreconditioner.build(simpleGFG, keyInfo, lambda);
 | 
						|
  GaussianFactorGraphSystem gfgs(simpleGFG, dummyPreconditioner, keyInfo, lambda);
 | 
						|
 | 
						|
  // Prepare container for each variable
 | 
						|
  Vector initial, residual, preconditionedResidual, p, actualAp;
 | 
						|
  initial = (Vector(6) << 0., 0., 0., 0., 0., 0.).finished();
 | 
						|
 | 
						|
  // Calculate values using GaussianFactorGraphSystem same as inside of PCGSolver
 | 
						|
  gfgs.residual(initial, residual);                         /* r = b-Ax */
 | 
						|
  gfgs.leftPrecondition(residual, preconditionedResidual);  /* pr = L^{-1} (b-Ax) */
 | 
						|
  gfgs.rightPrecondition(preconditionedResidual, p);        /* p = L^{-T} pr */
 | 
						|
  gfgs.multiply(p, actualAp);                                     /* A p */
 | 
						|
 | 
						|
  // Expected value of Ap for the first iteration of this example problem
 | 
						|
  Vector expectedAp = (Vector(6) << 100400, -249074.074, -2080, 148148.148, -146480, 37962.963).finished();
 | 
						|
  EXPECT(assert_equal(expectedAp, actualAp, 1e-3));
 | 
						|
 | 
						|
  // Expected value of getb
 | 
						|
  Vector expectedb = (Vector(6) << 100.0, -194.444, -20.0, 138.889, -120.0, -55.556).finished();
 | 
						|
  Vector actualb;
 | 
						|
  gfgs.getb(actualb);
 | 
						|
  EXPECT(assert_equal(expectedb, actualb, 1e-3));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test Dummy Preconditioner
 | 
						|
TEST( PCGSolver, dummy )
 | 
						|
{
 | 
						|
  LevenbergMarquardtParams paramsPCG;
 | 
						|
  paramsPCG.linearSolverType = LevenbergMarquardtParams::Iterative;
 | 
						|
  PCGSolverParameters::shared_ptr pcg = boost::make_shared<PCGSolverParameters>();
 | 
						|
  pcg->preconditioner_ = boost::make_shared<DummyPreconditionerParameters>();
 | 
						|
  paramsPCG.iterativeParams = pcg;
 | 
						|
 | 
						|
  NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
 | 
						|
 | 
						|
  Point2 x0(10,10);
 | 
						|
  Values c0;
 | 
						|
  c0.insert(X(1), x0);
 | 
						|
 | 
						|
  Values actualPCG = LevenbergMarquardtOptimizer(fg, c0, paramsPCG).optimize();
 | 
						|
 | 
						|
  DOUBLES_EQUAL(0,fg.error(actualPCG),tol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test Block-Jacobi Precondioner
 | 
						|
TEST( PCGSolver, blockjacobi )
 | 
						|
{
 | 
						|
  LevenbergMarquardtParams paramsPCG;
 | 
						|
  paramsPCG.linearSolverType = LevenbergMarquardtParams::Iterative;
 | 
						|
  PCGSolverParameters::shared_ptr pcg = boost::make_shared<PCGSolverParameters>();
 | 
						|
  pcg->preconditioner_ = boost::make_shared<BlockJacobiPreconditionerParameters>();
 | 
						|
  paramsPCG.iterativeParams = pcg;
 | 
						|
 | 
						|
  NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
 | 
						|
 | 
						|
  Point2 x0(10,10);
 | 
						|
  Values c0;
 | 
						|
  c0.insert(X(1), x0);
 | 
						|
 | 
						|
  Values actualPCG = LevenbergMarquardtOptimizer(fg, c0, paramsPCG).optimize();
 | 
						|
 | 
						|
  DOUBLES_EQUAL(0,fg.error(actualPCG),tol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Test Incremental Subgraph PCG Solver
 | 
						|
TEST( PCGSolver, subgraph )
 | 
						|
{
 | 
						|
  LevenbergMarquardtParams paramsPCG;
 | 
						|
  paramsPCG.linearSolverType = LevenbergMarquardtParams::Iterative;
 | 
						|
  PCGSolverParameters::shared_ptr pcg = boost::make_shared<PCGSolverParameters>();
 | 
						|
  pcg->preconditioner_ = boost::make_shared<SubgraphPreconditionerParameters>();
 | 
						|
  paramsPCG.iterativeParams = pcg;
 | 
						|
 | 
						|
  NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
 | 
						|
 | 
						|
  Point2 x0(10,10);
 | 
						|
  Values c0;
 | 
						|
  c0.insert(X(1), x0);
 | 
						|
 | 
						|
  Values actualPCG = LevenbergMarquardtOptimizer(fg, c0, paramsPCG).optimize();
 | 
						|
 | 
						|
  DOUBLES_EQUAL(0,fg.error(actualPCG),tol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
 |