153 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Matlab
		
	
	
close all
 | 
						|
clc
 | 
						|
 | 
						|
import gtsam.*;
 | 
						|
disp('Example of application of ISAM2 for visual-inertial navigation on the KITTI VISION BENCHMARK SUITE (http://www.computervisiononline.com/dataset/kitti-vision-benchmark-suite)')
 | 
						|
 | 
						|
%% Read metadata and compute relative sensor pose transforms
 | 
						|
% IMU metadata
 | 
						|
disp('-- Reading sensor metadata')
 | 
						|
IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
 | 
						|
IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
 | 
						|
IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
 | 
						|
  IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
 | 
						|
if ~IMUinBody.equals(Pose3, 1e-5)
 | 
						|
  error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
 | 
						|
end
 | 
						|
 | 
						|
% VO metadata
 | 
						|
VO_metadata = importdata('KittiRelativePose_metadata.txt');
 | 
						|
VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
 | 
						|
VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
 | 
						|
  VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
 | 
						|
VOinIMU = IMUinBody.inverse().compose(VOinBody);
 | 
						|
 | 
						|
%% Read data and change coordinate frame of GPS and VO measurements to IMU frame
 | 
						|
disp('-- Reading sensor data from file')
 | 
						|
% IMU data
 | 
						|
IMU_data = importdata('KittiEquivBiasedImu.txt');
 | 
						|
IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
 | 
						|
imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
 | 
						|
[IMU_data.acc_omega] = deal(imum{:});
 | 
						|
clear imum
 | 
						|
 | 
						|
% VO data
 | 
						|
VO_data = importdata('KittiRelativePose.txt');
 | 
						|
VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
 | 
						|
% Merge relative pose fields and convert to Pose3
 | 
						|
logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
 | 
						|
logposes = num2cell(logposes, 2);
 | 
						|
relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes);
 | 
						|
relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes);
 | 
						|
[VO_data.RelativePose] = deal(relposes{:});
 | 
						|
VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' });
 | 
						|
noiseModelVO = noiseModel.Diagonal.Sigmas([ VO_metadata.RotationSigma * [1;1;1]; VO_metadata.TranslationSigma * [1;1;1] ]);
 | 
						|
clear logposes relposes
 | 
						|
 | 
						|
%% Get initial conditions for the estimated trajectory
 | 
						|
currentPoseGlobal = Pose3;
 | 
						|
currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
 | 
						|
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
 | 
						|
sigma_init_x = noiseModel.Isotropic.Sigmas([ 1.0; 1.0; 0.01; 0.01; 0.01; 0.01 ]);
 | 
						|
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
 | 
						|
sigma_init_b = noiseModel.Isotropic.Sigmas([ 0.100; 0.100; 0.100; 5.00e-05; 5.00e-05; 5.00e-05 ]);
 | 
						|
sigma_between_b = [ IMU_metadata.AccelerometerBiasSigma * ones(3,1); IMU_metadata.GyroscopeBiasSigma * ones(3,1) ];
 | 
						|
g = [0;0;-9.8];
 | 
						|
w_coriolis = [0;0;0];
 | 
						|
 | 
						|
%% Solver object
 | 
						|
isamParams = ISAM2Params;
 | 
						|
isamParams.setFactorization('CHOLESKY');
 | 
						|
isamParams.setRelinearizeSkip(10);
 | 
						|
isam = gtsam.ISAM2(isamParams);
 | 
						|
newFactors = NonlinearFactorGraph;
 | 
						|
newValues = Values;
 | 
						|
 | 
						|
%% Main loop:
 | 
						|
% (1) we read the measurements
 | 
						|
% (2) we create the corresponding factors in the graph
 | 
						|
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
 | 
						|
timestamps = [VO_data.Time]';
 | 
						|
 | 
						|
timestamps = timestamps(15:end,:); % there seem to be issues with the initial IMU measurements
 | 
						|
IMUtimes = [IMU_data.Time];
 | 
						|
 | 
						|
disp('-- Starting main loop: inference is performed at each time step, but we plot trajectory every 100 steps')
 | 
						|
 | 
						|
for measurementIndex = 1:length(timestamps)
 | 
						|
  
 | 
						|
  % At each non=IMU measurement we initialize a new node in the graph
 | 
						|
  currentPoseKey = symbol('x',measurementIndex);
 | 
						|
  currentVelKey =  symbol('v',measurementIndex);
 | 
						|
  currentBiasKey = symbol('b',measurementIndex);
 | 
						|
  t = timestamps(measurementIndex, 1);
 | 
						|
  
 | 
						|
  if measurementIndex == 1
 | 
						|
    %% Create initial estimate and prior on initial pose, velocity, and biases
 | 
						|
    newValues.insert(currentPoseKey, currentPoseGlobal);
 | 
						|
    newValues.insert(currentVelKey, currentVelocityGlobal);
 | 
						|
    newValues.insert(currentBiasKey, currentBias);
 | 
						|
    newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
 | 
						|
    newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
 | 
						|
    newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
 | 
						|
  else
 | 
						|
    t_previous = timestamps(measurementIndex-1, 1);
 | 
						|
    %% Summarize IMU data between the previous GPS measurement and now
 | 
						|
    IMUindices = find(IMUtimes >= t_previous & IMUtimes <= t);
 | 
						|
    
 | 
						|
    currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
 | 
						|
      currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
 | 
						|
      IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
 | 
						|
    
 | 
						|
    for imuIndex = IMUindices
 | 
						|
      accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
 | 
						|
      omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
 | 
						|
      deltaT = IMU_data(imuIndex).dt;
 | 
						|
      currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
 | 
						|
    end
 | 
						|
    
 | 
						|
    % Create IMU factor
 | 
						|
    newFactors.add(ImuFactor( ...
 | 
						|
      currentPoseKey-1, currentVelKey-1, ...
 | 
						|
      currentPoseKey, currentVelKey, ...
 | 
						|
      currentBiasKey, currentSummarizedMeasurement, g, w_coriolis));
 | 
						|
    
 | 
						|
    % LC: sigma_init_b is wrong: this should be some uncertainty on bias evolution given in the IMU metadata
 | 
						|
    newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ...
 | 
						|
      noiseModel.Diagonal.Sigmas(sqrt(numel(IMUindices)) * sigma_between_b)));
 | 
						|
    
 | 
						|
    %% Create VO factor
 | 
						|
      VOpose = VO_data(measurementIndex).RelativePose;
 | 
						|
      newFactors.add(BetweenFactorPose3(currentPoseKey - 1, currentPoseKey, VOpose, noiseModelVO));
 | 
						|
    
 | 
						|
    % Add initial value
 | 
						|
    newValues.insert(currentPoseKey, currentPoseGlobal.compose(VOpose));
 | 
						|
    newValues.insert(currentVelKey, currentVelocityGlobal);
 | 
						|
    newValues.insert(currentBiasKey, currentBias);
 | 
						|
    
 | 
						|
    % Update solver
 | 
						|
    % =======================================================================
 | 
						|
    isam.update(newFactors, newValues);
 | 
						|
    newFactors = NonlinearFactorGraph;
 | 
						|
    newValues = Values;
 | 
						|
    
 | 
						|
    if rem(measurementIndex,100)==0 % plot every 100 time steps
 | 
						|
      cla;
 | 
						|
      plot3DTrajectory(isam.calculateEstimate, 'g-');
 | 
						|
      title('Estimated trajectory using ISAM2 (IMU+VO)')
 | 
						|
      xlabel('[m]')
 | 
						|
      ylabel('[m]')
 | 
						|
      zlabel('[m]')
 | 
						|
      axis equal
 | 
						|
      drawnow;
 | 
						|
    end
 | 
						|
    % ======================================================================= 
 | 
						|
    currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
 | 
						|
    currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
 | 
						|
    currentBias = isam.calculateEstimate(currentBiasKey);   
 | 
						|
  end
 | 
						|
   
 | 
						|
end % end main loop
 | 
						|
 | 
						|
disp('-- Reached end of sensor data')
 |