gtsam/gtsam/hybrid/tests/TinyHybridExample.h

86 lines
2.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2022, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file TinyHybrdiExample.h
* @date Mar 11, 2022
* @author Varun Agrawal
* @author Fan Jiang
*/
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#pragma once
namespace gtsam {
namespace tiny {
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
/**
* Create a tiny two variable hybrid model which represents
* the generative probability P(z, x, n) = P(z | x, n)P(x)P(n).
*/
static HybridBayesNet createHybridBayesNet(int num_measurements = 1) {
// Create hybrid Bayes net.
HybridBayesNet bayesNet;
// Create mode key: 0 is low-noise, 1 is high-noise.
const DiscreteKey mode{M(0), 2};
// Create Gaussian mixture Z(0) = X(0) + noise for each measurement.
for (int i = 0; i < num_measurements; i++) {
const auto conditional0 = boost::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(i), I_1x1, X(0), Z_1x1, 0.5));
const auto conditional1 = boost::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(i), I_1x1, X(0), Z_1x1, 3));
GaussianMixture gm({Z(i)}, {X(0)}, {mode}, {conditional0, conditional1});
bayesNet.emplaceMixture(gm); // copy :-(
}
// Create prior on X(0).
const auto prior_on_x0 =
GaussianConditional::FromMeanAndStddev(X(0), Vector1(5.0), 5.0);
bayesNet.emplaceGaussian(prior_on_x0); // copy :-(
// Add prior on mode.
bayesNet.emplaceDiscrete(mode, "4/6");
return bayesNet;
}
static HybridGaussianFactorGraph convertBayesNet(const HybridBayesNet& bayesNet,
const HybridValues& sample) {
HybridGaussianFactorGraph fg;
int num_measurements = bayesNet.size() - 2;
for (int i = 0; i < num_measurements; i++) {
auto conditional = bayesNet.atMixture(i);
auto factor = conditional->likelihood(sample.continuousSubset({Z(i)}));
fg.push_back(factor);
}
fg.push_back(bayesNet.atGaussian(num_measurements));
fg.push_back(bayesNet.atDiscrete(num_measurements + 1));
return fg;
}
static HybridGaussianFactorGraph createHybridGaussianFactorGraph(
int num_measurements = 1) {
auto bayesNet = createHybridBayesNet(num_measurements);
auto sample = bayesNet.sample();
return convertBayesNet(bayesNet, sample);
}
} // namespace tiny
} // namespace gtsam