390 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			390 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /*
 | |
|  * NoiseModel
 | |
|  *
 | |
|  *  Created on: Jan 13, 2010
 | |
|  *      Author: Richard Roberts
 | |
|  *      Author: Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <limits>
 | |
| #include <iostream>
 | |
| #include <typeinfo>
 | |
| #include <stdexcept>
 | |
| 
 | |
| #include <boost/numeric/ublas/lu.hpp>
 | |
| #include <boost/numeric/ublas/io.hpp>
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/random/linear_congruential.hpp>
 | |
| #include <boost/random/normal_distribution.hpp>
 | |
| #include <boost/random/variate_generator.hpp>
 | |
| 
 | |
| #include <gtsam/linear/NoiseModel.h>
 | |
| #include <gtsam/linear/SharedDiagonal.h>
 | |
| #include <gtsam/base/DenseQRUtil.h>
 | |
| 
 | |
| namespace ublas = boost::numeric::ublas;
 | |
| typedef ublas::matrix_column<Matrix> column;
 | |
| 
 | |
| static double inf = std::numeric_limits<double>::infinity();
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| namespace noiseModel {
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // update A, b
 | |
| // A' \define A_{S}-ar and b'\define b-ad
 | |
| // Linear algebra: takes away projection on latest orthogonal
 | |
| // Graph: make a new factor on the separator S
 | |
| // __attribute__ ((noinline))	// uncomment to prevent inlining when profiling
 | |
| static void updateAb(Matrix& Ab, int j, const Vector& a, const Vector& rd) {
 | |
| 	size_t m = Ab.size1(), n = Ab.size2()-1;
 | |
| 
 | |
| 	for (size_t i = 0; i < m; i++) { // update all rows
 | |
| 		double ai = a(i);
 | |
| 		double *Aij = Ab.data().begin() + i * (n+1) + j + 1;
 | |
| 		const double *rptr = rd.data().begin() + j + 1;
 | |
| 		// Ab(i,j+1:end) -= ai*rd(j+1:end)
 | |
| 		for (size_t j2 = j + 1; j2 < n+1; j2++, Aij++, rptr++)
 | |
| 			*Aij -= ai * (*rptr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance, bool smart) {
 | |
| 	size_t m = covariance.size1(), n = covariance.size2();
 | |
| 	if (m != n) throw invalid_argument("Gaussian::Covariance: covariance not square");
 | |
| 	if (smart) {
 | |
| 		// check all non-diagonal entries
 | |
| 		size_t i,j;
 | |
| 		for (i = 0; i < m; i++)
 | |
| 			for (j = 0; j < n; j++)
 | |
| 				if (i != j && fabs(covariance(i, j) > 1e-9)) goto full;
 | |
| 		Vector variances(n);
 | |
| 		for (j = 0; j < n; j++) variances(j) = covariance(j,j);
 | |
| 		return Diagonal::Variances(variances,true);
 | |
| 	}
 | |
| 	full: return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
 | |
| }
 | |
| 
 | |
| void Gaussian::print(const string& name) const {
 | |
| 	gtsam::print(thisR(), "Gaussian");
 | |
| }
 | |
| 
 | |
| bool Gaussian::equals(const Base& expected, double tol) const {
 | |
| 	const Gaussian* p = dynamic_cast<const Gaussian*> (&expected);
 | |
| 	if (p == NULL) return false;
 | |
| 	if (typeid(*this) != typeid(*p)) return false;
 | |
| 	//if (!sqrt_information_) return true; // ALEX todo;
 | |
| 	return equal_with_abs_tol(R(), p->R(), sqrt(tol));
 | |
| }
 | |
| 
 | |
| Vector Gaussian::whiten(const Vector& v) const {
 | |
| 	return thisR() * v;
 | |
| }
 | |
| 
 | |
| 
 | |
| Vector Gaussian::unwhiten(const Vector& v) const {
 | |
| 	return backSubstituteUpper(thisR(), v);
 | |
| }
 | |
| 
 | |
| double Gaussian::Mahalanobis(const Vector& v) const {
 | |
| 	// Note: for Diagonal, which does ediv_, will be correct for constraints
 | |
| 	Vector w = whiten(v);
 | |
| 	return inner_prod(w, w);
 | |
| }
 | |
| 
 | |
| Matrix Gaussian::Whiten(const Matrix& H) const {
 | |
| 	return thisR() * H;
 | |
| }
 | |
| 
 | |
| void Gaussian::WhitenInPlace(Matrix& H) const {
 | |
| 	H = thisR() * H;
 | |
| }
 | |
| 
 | |
| void Gaussian::WhitenInPlace(MatrixColMajor& H) const {
 | |
|   H = ublas::prod(thisR(), H);
 | |
| }
 | |
| 
 | |
| // General QR, see also special version in Constrained
 | |
| SharedDiagonal Gaussian::QR(Matrix& Ab, boost::optional<vector<long>&> firstZeroRows) const {
 | |
| 
 | |
| 	// get size(A) and maxRank
 | |
| 	// TODO: really no rank problems ?
 | |
| 	size_t m = Ab.size1(), n = Ab.size2()-1;
 | |
| 	size_t maxRank = min(m,n);
 | |
| 
 | |
| 	// pre-whiten everything (cheaply if possible)
 | |
| 	WhitenInPlace(Ab);
 | |
| 
 | |
| 	// Perform in-place Householder
 | |
| #ifdef GT_USE_LAPACK
 | |
| 	if(firstZeroRows)
 | |
| 	  householder_denseqr(Ab, &(*firstZeroRows)[0]);
 | |
| 	else
 | |
| 	  householder_denseqr(Ab);
 | |
| #else
 | |
| 	householder(Ab, maxRank);
 | |
| #endif
 | |
| 
 | |
| 	return Unit::Create(maxRank);
 | |
| }
 | |
| 
 | |
| // General QR, see also special version in Constrained
 | |
| SharedDiagonal Gaussian::QRColumnWise(ublas::matrix<double, ublas::column_major>& Ab, vector<long>& firstZeroRows) const {
 | |
| 
 | |
|   // get size(A) and maxRank
 | |
|   // TODO: really no rank problems ?
 | |
|   size_t m = Ab.size1(), n = Ab.size2()-1;
 | |
|   size_t maxRank = min(m,n);
 | |
| 
 | |
|   // pre-whiten everything (cheaply if possible)
 | |
|   WhitenInPlace(Ab);
 | |
| 
 | |
|   // Perform in-place Householder
 | |
| #ifdef GT_USE_LAPACK
 | |
|   householder_denseqr_colmajor(Ab, &firstZeroRows[0]);
 | |
| #else
 | |
|   householder(Ab, maxRank);
 | |
| #endif
 | |
| 
 | |
|   return Unit::Create(maxRank);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Diagonal::Diagonal(const Vector& sigmas) :
 | |
| 		Gaussian(sigmas.size()), sigmas_(sigmas), invsigmas_(reciprocal(sigmas)) {
 | |
| }
 | |
| 
 | |
| Diagonal::shared_ptr Diagonal::Variances(const Vector& variances, bool smart) {
 | |
| 	if (smart) {
 | |
| 		// check whether all the same entry
 | |
| 		int j, n = variances.size();
 | |
| 		for (j = 1; j < n; j++)
 | |
| 			if (variances(j) != variances(0)) goto full;
 | |
| 		return Isotropic::Variance(n, variances(0), true);
 | |
| 	}
 | |
| 	full: return shared_ptr(new Diagonal(esqrt(variances)));
 | |
| }
 | |
| 
 | |
| Diagonal::shared_ptr Diagonal::Sigmas(const Vector& sigmas, bool smart) {
 | |
| 	if (smart) {
 | |
| 		// look for zeros to make a constraint
 | |
| 		for (size_t i=0; i<sigmas.size(); ++i)
 | |
| 			if (sigmas(i)<1e-8)
 | |
| 				return Constrained::MixedSigmas(sigmas);
 | |
| 	}
 | |
| 	return Diagonal::shared_ptr(new Diagonal(sigmas));
 | |
| }
 | |
| 
 | |
| void Diagonal::print(const string& name) const {
 | |
| 	gtsam::print(sigmas_, "Diagonal sigmas " + name);
 | |
| }
 | |
| 
 | |
| Vector Diagonal::whiten(const Vector& v) const {
 | |
| 	return emul(v, invsigmas_);
 | |
| }
 | |
| 
 | |
| Vector Diagonal::unwhiten(const Vector& v) const {
 | |
| 	return emul(v, sigmas_);
 | |
| }
 | |
| 
 | |
| Matrix Diagonal::Whiten(const Matrix& H) const {
 | |
| 	return vector_scale(invsigmas_, H);
 | |
| }
 | |
| 
 | |
| void Diagonal::WhitenInPlace(Matrix& H) const {
 | |
| 	vector_scale_inplace(invsigmas_, H);
 | |
| }
 | |
| 
 | |
| void Diagonal::WhitenInPlace(MatrixColMajor& H) const {
 | |
| 
 | |
|   vector_scale_inplace(invsigmas_, H);
 | |
| }
 | |
| 
 | |
| Vector Diagonal::sample() const {
 | |
| 	Vector result(dim_);
 | |
| 	for (size_t i = 0; i < dim_; i++) {
 | |
| 		typedef boost::normal_distribution<double> Normal;
 | |
| 		Normal dist(0.0, this->sigmas_(i));
 | |
| 		boost::variate_generator<boost::minstd_rand&, Normal> norm(generator, dist);
 | |
| 		result(i) = norm();
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| void Constrained::print(const std::string& name) const {
 | |
| 	gtsam::print(sigmas_, "Constrained sigmas " + name);
 | |
| }
 | |
| 
 | |
| Vector Constrained::whiten(const Vector& v) const {
 | |
| 	// ediv_ does the right thing with the errors
 | |
| 	return ediv_(v, sigmas_);
 | |
| }
 | |
| 
 | |
| Matrix Constrained::Whiten(const Matrix& H) const {
 | |
| 	throw logic_error("noiseModel::Constrained cannot Whiten");
 | |
| }
 | |
| 
 | |
| void Constrained::WhitenInPlace(Matrix& H) const {
 | |
| 	throw logic_error("noiseModel::Constrained cannot Whiten");
 | |
| }
 | |
| 
 | |
| void Constrained::WhitenInPlace(MatrixColMajor& H) const {
 | |
|   throw logic_error("noiseModel::Constrained cannot Whiten");
 | |
| }
 | |
| 
 | |
| // Special version of QR for Constrained calls slower but smarter code
 | |
| // that deals with possibly zero sigmas
 | |
| // It is Gram-Schmidt orthogonalization rather than Householder
 | |
| // Previously Diagonal::QR
 | |
| SharedDiagonal Constrained::QR(Matrix& Ab, boost::optional<std::vector<long>&> firstZeroRows) const {
 | |
| 	bool verbose = false;
 | |
| 	if (verbose) cout << "\nStarting Constrained::QR" << endl;
 | |
| 
 | |
| 	// get size(A) and maxRank
 | |
| 	size_t m = Ab.size1(), n = Ab.size2()-1;
 | |
| 	size_t maxRank = min(m,n);
 | |
| 
 | |
| 	// create storage for [R d]
 | |
| 	typedef boost::tuple<size_t, Vector, double> Triple;
 | |
| 	list<Triple> Rd;
 | |
| 
 | |
| 	Vector pseudo(m); // allocate storage for pseudo-inverse
 | |
| 	Vector weights = emul(invsigmas_,invsigmas_); // calculate weights once
 | |
| 
 | |
| 	// We loop over all columns, because the columns that can be eliminated
 | |
| 	// are not necessarily contiguous. For each one, estimate the corresponding
 | |
| 	// scalar variable x as d-rS, with S the separator (remaining columns).
 | |
| 	// Then update A and b by substituting x with d-rS, zero-ing out x's column.
 | |
| 	for (size_t j=0; j<n; ++j) {
 | |
| 		// extract the first column of A
 | |
| 		// ublas::matrix_column is slower ! TODO Really, why ????
 | |
| 		//  AGC: if you use column() you will automatically call ublas, use
 | |
| 		//      column_() to actually use the one in our library
 | |
| 		Vector a(column(Ab, j));
 | |
| 
 | |
| 		// Calculate weighted pseudo-inverse and corresponding precision
 | |
| 		double precision = weightedPseudoinverse(a, weights, pseudo);
 | |
| 
 | |
| 		// If precision is zero, no information on this column
 | |
| 		// This is actually not limited to constraints, could happen in Gaussian::QR
 | |
| 		// In that case, we're probably hosed. TODO: make sure Householder is rank-revealing
 | |
| 		if (precision < 1e-8) continue;
 | |
| 
 | |
| 		// create solution [r d], rhs is automatically r(n)
 | |
| 		Vector rd(n+1); // uninitialized !
 | |
| 		rd(j)=1.0; // put 1 on diagonal
 | |
| 		for (size_t j2=j+1; j2<n+1; ++j2) // and fill in remainder with dot-products
 | |
| 			rd(j2) = inner_prod(pseudo, ublas::matrix_column<Matrix>(Ab, j2));
 | |
| 
 | |
| 		// construct solution (r, d, sigma)
 | |
| 		Rd.push_back(boost::make_tuple(j, rd, precision));
 | |
| 
 | |
| 		// exit after rank exhausted
 | |
| 		if (Rd.size()>=maxRank) break;
 | |
| 
 | |
| 		// update Ab, expensive, using outer product
 | |
| 		updateAb(Ab, j, a, rd);
 | |
| 	}
 | |
| 
 | |
| 	// Create storage for precisions
 | |
| 	Vector precisions(Rd.size());
 | |
| 
 | |
| 	// Write back result in Ab, imperative as we are
 | |
| 	// TODO: test that is correct if a column was skipped !!!!
 | |
| 	size_t i = 0; // start with first row
 | |
| 	bool mixed = false;
 | |
| 	BOOST_FOREACH(const Triple& t, Rd) {
 | |
| 		const size_t& j  = t.get<0>();
 | |
| 		const Vector& rd = t.get<1>();
 | |
| 		precisions(i)    = t.get<2>();
 | |
| 		if (precisions(i)==inf) mixed = true;
 | |
| 		for (size_t j2=0; j2<j; ++j2) Ab(i,j2) = 0.0; // fill in zeros below diagonal anway
 | |
| 		for (size_t j2=j; j2<n+1; ++j2) // copy the j-the row TODO memcpy
 | |
| 			Ab(i,j2) = rd(j2);
 | |
| 		i+=1;
 | |
| 	}
 | |
| 
 | |
| 	return mixed ? Constrained::MixedPrecisions(precisions) : Diagonal::Precisions(precisions);
 | |
| }
 | |
| 
 | |
| SharedDiagonal Constrained::QRColumnWise(ublas::matrix<double, ublas::column_major>& Ab, vector<long>& firstZeroRows) const {
 | |
|   Matrix AbRowWise(Ab);
 | |
|   SharedDiagonal result = this->QR(AbRowWise, firstZeroRows);
 | |
|   Ab = AbRowWise;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| Isotropic::shared_ptr Isotropic::Variance(size_t dim, double variance, bool smart)  {
 | |
| 	if (smart && fabs(variance-1.0)<1e-9) return Unit::Create(dim);
 | |
| 	return shared_ptr(new Isotropic(dim, sqrt(variance)));
 | |
| }
 | |
| 
 | |
| void Isotropic::print(const string& name) const {
 | |
| 	cout << "Isotropic sigma " << name << " " << sigma_ << endl;
 | |
| }
 | |
| 
 | |
| double Isotropic::Mahalanobis(const Vector& v) const {
 | |
| 	double dot = inner_prod(v, v);
 | |
| 	return dot * invsigma_ * invsigma_;
 | |
| }
 | |
| 
 | |
| Vector Isotropic::whiten(const Vector& v) const {
 | |
| 	return v * invsigma_;
 | |
| }
 | |
| 
 | |
| Vector Isotropic::unwhiten(const Vector& v) const {
 | |
| 	return v * sigma_;
 | |
| }
 | |
| 
 | |
| Matrix Isotropic::Whiten(const Matrix& H) const {
 | |
| 	return invsigma_ * H;
 | |
| }
 | |
| 
 | |
| void Isotropic::WhitenInPlace(Matrix& H) const {
 | |
| 	H *= invsigma_;
 | |
| }
 | |
| 
 | |
| void Isotropic::WhitenInPlace(MatrixColMajor& H) const {
 | |
|   H *= invsigma_;
 | |
| }
 | |
| 
 | |
| // faster version
 | |
| Vector Isotropic::sample() const {
 | |
| 	typedef boost::normal_distribution<double> Normal;
 | |
| 	Normal dist(0.0, this->sigma_);
 | |
| 	boost::variate_generator<boost::minstd_rand&, Normal> norm(generator, dist);
 | |
| 	Vector result(dim_);
 | |
| 	for (size_t i = 0; i < dim_; i++)
 | |
| 		result(i) = norm();
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void Unit::print(const std::string& name) const {
 | |
| 	cout << "Unit (" << dim_ << ") " << name << endl;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| }
 | |
| } // gtsam
 |