83 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file Pose2SLAMExample_advanced.cpp
 | 
						|
 * @brief Simple Pose2SLAM Example using
 | 
						|
 * pre-built pose2SLAM domain
 | 
						|
 * @author Chris Beall
 | 
						|
 */
 | 
						|
 | 
						|
// pull in the Pose2 SLAM domain with all typedefs and helper functions defined
 | 
						|
#include <gtsam/slam/pose2SLAM.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/Marginals.h>
 | 
						|
#include <gtsam/base/Vector.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
 | 
						|
#include <boost/shared_ptr.hpp>
 | 
						|
#include <cmath>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace gtsam::noiseModel;
 | 
						|
 | 
						|
int main(int argc, char** argv) {
 | 
						|
	/* 1. create graph container and add factors to it */
 | 
						|
	pose2SLAM::Graph graph;
 | 
						|
 | 
						|
	/* 2.a add prior  */
 | 
						|
	Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
 | 
						|
	SharedDiagonal priorNoise = Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
 | 
						|
	graph.addPosePrior(1, priorMean, priorNoise); // add directly to graph
 | 
						|
 | 
						|
	/* 2.b add odometry */
 | 
						|
	SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
 | 
						|
	Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | 
						|
	graph.addRelativePose(1, 2, odometry, odometryNoise);
 | 
						|
	graph.addRelativePose(2, 3, odometry, odometryNoise);
 | 
						|
	graph.print("full graph");
 | 
						|
 | 
						|
	/* 3. Create the data structure to hold the initial estimate to the solution
 | 
						|
	 * initialize to noisy points */
 | 
						|
	pose2SLAM::Values initial;
 | 
						|
	initial.insertPose(1, Pose2(0.5, 0.0, 0.2));
 | 
						|
	initial.insertPose(2, Pose2(2.3, 0.1, -0.2));
 | 
						|
	initial.insertPose(3, Pose2(4.1, 0.1, 0.1));
 | 
						|
	initial.print("initial estimate");
 | 
						|
 | 
						|
	/* 4.2.1 Alternatively, you can go through the process step by step
 | 
						|
	 * Choose an ordering */
 | 
						|
	Ordering ordering = *graph.orderingCOLAMD(initial);
 | 
						|
 | 
						|
	/* 4.2.2 set up solver and optimize */
 | 
						|
	LevenbergMarquardtParams params;
 | 
						|
	params.absoluteErrorTol = 1e-15;
 | 
						|
	params.relativeErrorTol = 1e-15;
 | 
						|
	params.ordering = ordering;
 | 
						|
	LevenbergMarquardtOptimizer optimizer(graph, initial, params);
 | 
						|
 | 
						|
	pose2SLAM::Values result = optimizer.optimize();
 | 
						|
	result.print("final result");
 | 
						|
 | 
						|
	/* Get covariances */
 | 
						|
	Marginals marginals(graph, result, Marginals::CHOLESKY);
 | 
						|
	Matrix covariance1 = marginals.marginalCovariance(1);
 | 
						|
	Matrix covariance2 = marginals.marginalCovariance(2);
 | 
						|
 | 
						|
	print(covariance1, "Covariance1");
 | 
						|
	print(covariance2, "Covariance2");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 |