184 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief A simple visual SLAM example for structure from motion
 | |
| % @author Duy-Nguyen Ta
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| clear
 | |
| 
 | |
| %% Data Options
 | |
| TRIANGLE = false;
 | |
| NCAMERAS = 20;
 | |
| SHOW_IMAGES = false;
 | |
| 
 | |
| %% iSAM Options
 | |
| HARD_CONSTRAINT = false;
 | |
| POINT_PRIORS = false;
 | |
| BATCH_INIT = true;
 | |
| REORDER_INTERVAL=10;
 | |
| ALWAYS_RELINEARIZE = false;
 | |
| 
 | |
| %% Display Options
 | |
| SAVE_GRAPH = false;
 | |
| PRINT_STATS = true;
 | |
| DRAW_INTERVAL = 20;
 | |
| CAMERA_INTERVAL = 1;
 | |
| DRAW_TRUE_POSES = false;
 | |
| SAVE_FIGURES = false;
 | |
| SAVE_GRAPHS = false;
 | |
| 
 | |
| %% Generate simulated data
 | |
| if TRIANGLE % Create a triangle target, just 3 points on a plane
 | |
|     nPoints = 3;
 | |
|     r = 10;
 | |
|     for j=1:nPoints
 | |
|         theta = (j-1)*2*pi/nPoints;
 | |
|         points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
 | |
|     end
 | |
| else % 3D landmarks as vertices of a cube
 | |
|     nPoints = 8;
 | |
|     points = {gtsamPoint3([10 10 10]'),...
 | |
|         gtsamPoint3([-10 10 10]'),...
 | |
|         gtsamPoint3([-10 -10 10]'),...
 | |
|         gtsamPoint3([10 -10 10]'),...
 | |
|         gtsamPoint3([10 10 -10]'),...
 | |
|         gtsamPoint3([-10 10 -10]'),...
 | |
|         gtsamPoint3([-10 -10 -10]'),...
 | |
|         gtsamPoint3([10 -10 -10]')};
 | |
| end
 | |
| 
 | |
| %% Create camera cameras on a circle around the triangle
 | |
| height = 10; r = 40;
 | |
| K = gtsamCal3_S2(500,500,0,640/2,480/2);
 | |
| for i=1:NCAMERAS
 | |
|     theta = (i-1)*2*pi/NCAMERAS;
 | |
|     t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
 | |
|     cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K);
 | |
|     if SHOW_IMAGES % show images
 | |
|         figure(2+i);clf;hold on
 | |
|         set(2+i,'NumberTitle','off','Name',sprintf('Camera %d',i));
 | |
|         for j=1:nPoints
 | |
|             zij = cameras{i}.project(points{j});
 | |
|             plot(zij.x,zij.y,'*');
 | |
|             axis([1 640 1 480]);
 | |
|         end
 | |
|     end
 | |
| end
 | |
| odometry = cameras{1}.pose.between(cameras{2}.pose);
 | |
| 
 | |
| 
 | |
| %% Set Noise parameters
 | |
| poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
 | |
| odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
 | |
| pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
 | |
| measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
 | |
| 
 | |
| %% Initialize iSAM
 | |
| isam = visualSLAMISAM(REORDER_INTERVAL);
 | |
| newFactors = visualSLAMGraph;
 | |
| initialEstimates = visualSLAMValues;
 | |
| i1 = symbol('x',1);
 | |
| camera1 = cameras{1};
 | |
| pose1 = camera1.pose;
 | |
| if HARD_CONSTRAINT % add hard constraint
 | |
|     newFactors.addPoseConstraint(i1,pose1);
 | |
| else
 | |
|     newFactors.addPosePrior(i1,pose1, poseNoise);
 | |
| end
 | |
| initialEstimates.insertPose(i1,pose1);
 | |
| % Add visual measurement factors from first pose
 | |
| for j=1:nPoints
 | |
|     jj = symbol('l',j);
 | |
|     if POINT_PRIORS % add point priors
 | |
|         newFactors.addPointPrior(jj, points{j}, pointNoise);
 | |
|     end
 | |
|     zij = camera1.project(points{j});
 | |
|     newFactors.addMeasurement(zij, measurementNoise, i1, jj, K);
 | |
|     initialEstimates.insertPoint(jj, points{j});
 | |
| end
 | |
| 
 | |
| %% Run iSAM Loop
 | |
| figure(1);clf;hold on;
 | |
| set(1,'NumberTitle','off','Name','iSAM timing');
 | |
| for i=2:NCAMERAS
 | |
|     
 | |
|     %% Add odometry
 | |
|     newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise);
 | |
|     
 | |
|     %% Add visual measurement factors
 | |
|     for j=1:nPoints
 | |
|         zij = cameras{i}.project(points{j});
 | |
|         newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
 | |
|     end
 | |
|     
 | |
|     %% Initial estimates for the new pose. Also initialize points while in the first frame.
 | |
|     %TODO: this might be suboptimal since "result" is not the fully optimized result
 | |
|     if (i==2), prevPose = cameras{1}.pose;
 | |
|     else, prevPose = result.pose(symbol('x',i-1)); end
 | |
|     initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
 | |
|     
 | |
|     %% Update ISAM
 | |
|     if BATCH_INIT & (i==2) % Do a full optimize for first two poses
 | |
|         initialEstimates
 | |
|         fullyOptimized = newFactors.optimize(initialEstimates)
 | |
|         initialEstimates = fullyOptimized;
 | |
|     end
 | |
|     figure(1);tic;
 | |
|     isam.update(newFactors, initialEstimates);
 | |
|     t=toc; plot(i,t,'r.'); tic
 | |
|     result = isam.estimate();
 | |
|     t=toc; plot(i,t,'g.');
 | |
|     if ALWAYS_RELINEARIZE % re-linearize
 | |
|         isam.reorder_relinearize();
 | |
|     end
 | |
|     
 | |
|     if SAVE_GRAPH
 | |
|         isam.saveGraph(sprintf('VisualiSAM.dot',i));
 | |
|     end
 | |
|     if PRINT_STATS
 | |
|         isam.printStats();
 | |
|     end
 | |
|     if mod(i,DRAW_INTERVAL)==0
 | |
|         %% Plot results
 | |
|         tic
 | |
|         h=figure(2);clf
 | |
|         set(1,'NumberTitle','off','Name','Visual iSAM');
 | |
|         hold on;
 | |
|         for j=1:size(points,2)
 | |
|             P = isam.marginalCovariance(symbol('l',j));
 | |
|             point_j = result.point(symbol('l',j));
 | |
|             plot3(point_j.x, point_j.y, point_j.z,'marker','o');
 | |
|             covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
 | |
|         end
 | |
|         for ii=1:CAMERA_INTERVAL:i
 | |
|             P = isam.marginalCovariance(symbol('x',ii));
 | |
|             pose_ii = result.pose(symbol('x',ii));
 | |
|             plotPose3(pose_ii,P,10);
 | |
|             if DRAW_TRUE_POSES % show ground truth
 | |
|                 plotPose3(cameras{ii}.pose,0.001*eye(6),10);
 | |
|             end
 | |
|         end
 | |
|         axis([-40 40 -40 40 -10 20]);axis equal
 | |
|         view(3)
 | |
|         colormap('hot')
 | |
|         figure(2);
 | |
|         t=toc;
 | |
|         if DRAW_INTERVAL~=NCAMERAS, plot(i,t,'b.'); end
 | |
|         if SAVE_FIGURES
 | |
|             print(h,'-dpng',sprintf('VisualiSAM%03d.png',i));
 | |
|         end
 | |
|         if SAVE_GRAPHS
 | |
|             isam.saveGraph(sprintf('VisualiSAM%03d.dot',i));
 | |
|         end
 | |
|     end
 | |
|     
 | |
|     %% Reset newFactors and initialEstimates to prepare for the next update
 | |
|     newFactors = visualSLAMGraph;
 | |
|     initialEstimates = visualSLAMValues;
 | |
| end |