325 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			325 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file ImuFactorsExample
 | 
						|
 * @brief Test example for using GTSAM ImuFactor and ImuCombinedFactor
 | 
						|
 * navigation code.
 | 
						|
 * @author Garrett (ghemann@gmail.com), Luca Carlone
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * Example of use of the imuFactors (imuFactor and combinedImuFactor) in
 | 
						|
 * conjunction with GPS
 | 
						|
 *  - imuFactor is used by default. You can test combinedImuFactor by
 | 
						|
 *  appending a `-c` flag at the end (see below for example command).
 | 
						|
 *  - we read IMU and GPS data from a CSV file, with the following format:
 | 
						|
 *  A row starting with "i" is the first initial position formatted with
 | 
						|
 *  N, E, D, qx, qY, qZ, qW, velN, velE, velD
 | 
						|
 *  A row starting with "0" is an imu measurement
 | 
						|
 *  (body frame - Forward, Right, Down)
 | 
						|
 *  linAccX, linAccY, linAccZ, angVelX, angVelY, angVelX
 | 
						|
 *  A row starting with "1" is a gps correction formatted with
 | 
						|
 *  N, E, D, qX, qY, qZ, qW
 | 
						|
 * Note that for GPS correction, we're only using the position not the
 | 
						|
 * rotation. The rotation is provided in the file for ground truth comparison.
 | 
						|
 *
 | 
						|
 *  See usage: ./ImuFactorsExample --help
 | 
						|
 */
 | 
						|
 | 
						|
#include <boost/program_options.hpp>
 | 
						|
 | 
						|
// GTSAM related includes.
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/navigation/CombinedImuFactor.h>
 | 
						|
#include <gtsam/navigation/GPSFactor.h>
 | 
						|
#include <gtsam/navigation/ImuFactor.h>
 | 
						|
#include <gtsam/nonlinear/ISAM2.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/slam/dataset.h>
 | 
						|
 | 
						|
#include <cstring>
 | 
						|
#include <fstream>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace gtsam;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
using symbol_shorthand::B;  // Bias  (ax,ay,az,gx,gy,gz)
 | 
						|
using symbol_shorthand::V;  // Vel   (xdot,ydot,zdot)
 | 
						|
using symbol_shorthand::X;  // Pose3 (x,y,z,r,p,y)
 | 
						|
 | 
						|
namespace po = boost::program_options;
 | 
						|
 | 
						|
po::variables_map parseOptions(int argc, char* argv[]) {
 | 
						|
  po::options_description desc;
 | 
						|
  desc.add_options()("help,h", "produce help message")(
 | 
						|
      "data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
 | 
						|
      "path to the CSV file with the IMU data")(
 | 
						|
      "output_filename",
 | 
						|
      po::value<string>()->default_value("imuFactorExampleResults.csv"),
 | 
						|
      "path to the result file to use")("use_isam", po::bool_switch(),
 | 
						|
                                        "use ISAM as the optimizer");
 | 
						|
 | 
						|
  po::variables_map vm;
 | 
						|
  po::store(po::parse_command_line(argc, argv, desc), vm);
 | 
						|
 | 
						|
  if (vm.count("help")) {
 | 
						|
    cout << desc << "\n";
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
 | 
						|
  return vm;
 | 
						|
}
 | 
						|
 | 
						|
boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
 | 
						|
  // We use the sensor specs to build the noise model for the IMU factor.
 | 
						|
  double accel_noise_sigma = 0.0003924;
 | 
						|
  double gyro_noise_sigma = 0.000205689024915;
 | 
						|
  double accel_bias_rw_sigma = 0.004905;
 | 
						|
  double gyro_bias_rw_sigma = 0.000001454441043;
 | 
						|
  Matrix33 measured_acc_cov = I_3x3 * pow(accel_noise_sigma, 2);
 | 
						|
  Matrix33 measured_omega_cov = I_3x3 * pow(gyro_noise_sigma, 2);
 | 
						|
  Matrix33 integration_error_cov =
 | 
						|
      I_3x3 * 1e-8;  // error committed in integrating position from velocities
 | 
						|
  Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
 | 
						|
  Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
 | 
						|
  Matrix66 bias_acc_omega_int =
 | 
						|
      I_6x6 * 1e-5;  // error in the bias used for preintegration
 | 
						|
 | 
						|
  auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
 | 
						|
  // PreintegrationBase params:
 | 
						|
  p->accelerometerCovariance =
 | 
						|
      measured_acc_cov;  // acc white noise in continuous
 | 
						|
  p->integrationCovariance =
 | 
						|
      integration_error_cov;  // integration uncertainty continuous
 | 
						|
  // should be using 2nd order integration
 | 
						|
  // PreintegratedRotation params:
 | 
						|
  p->gyroscopeCovariance =
 | 
						|
      measured_omega_cov;  // gyro white noise in continuous
 | 
						|
  // PreintegrationCombinedMeasurements params:
 | 
						|
  p->biasAccCovariance = bias_acc_cov;      // acc bias in continuous
 | 
						|
  p->biasOmegaCovariance = bias_omega_cov;  // gyro bias in continuous
 | 
						|
  p->biasAccOmegaInt = bias_acc_omega_int;
 | 
						|
 | 
						|
  return p;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char* argv[]) {
 | 
						|
  string data_filename, output_filename;
 | 
						|
 | 
						|
  bool use_isam = false;
 | 
						|
 | 
						|
  po::variables_map var_map = parseOptions(argc, argv);
 | 
						|
 | 
						|
  data_filename = findExampleDataFile(var_map["data_csv_path"].as<string>());
 | 
						|
  output_filename = var_map["output_filename"].as<string>();
 | 
						|
  use_isam = var_map["use_isam"].as<bool>();
 | 
						|
 | 
						|
  ISAM2* isam2 = 0;
 | 
						|
  if (use_isam) {
 | 
						|
    printf("Using ISAM2\n");
 | 
						|
    ISAM2Params parameters;
 | 
						|
    parameters.relinearizeThreshold = 0.01;
 | 
						|
    parameters.relinearizeSkip = 1;
 | 
						|
    isam2 = new ISAM2(parameters);
 | 
						|
 | 
						|
  } else {
 | 
						|
    printf("Using Levenberg Marquardt Optimizer\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Set up output file for plotting errors
 | 
						|
  FILE* fp_out = fopen(output_filename.c_str(), "w+");
 | 
						|
  fprintf(fp_out,
 | 
						|
          "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m),gt_qx,"
 | 
						|
          "gt_qy,gt_qz,gt_qw\n");
 | 
						|
 | 
						|
  // Begin parsing the CSV file.  Input the first line for initialization.
 | 
						|
  // From there, we'll iterate through the file and we'll preintegrate the IMU
 | 
						|
  // or add in the GPS given the input.
 | 
						|
  ifstream file(data_filename.c_str());
 | 
						|
  string value;
 | 
						|
 | 
						|
  // Format is (N,E,D,qX,qY,qZ,qW,velN,velE,velD)
 | 
						|
  Vector10 initial_state;
 | 
						|
  getline(file, value, ',');  // i
 | 
						|
  for (int i = 0; i < 9; i++) {
 | 
						|
    getline(file, value, ',');
 | 
						|
    initial_state(i) = stof(value.c_str());
 | 
						|
  }
 | 
						|
  getline(file, value, '\n');
 | 
						|
  initial_state(9) = stof(value.c_str());
 | 
						|
  cout << "initial state:\n" << initial_state.transpose() << "\n\n";
 | 
						|
 | 
						|
  // Assemble initial quaternion through GTSAM constructor
 | 
						|
  // ::quaternion(w,x,y,z);
 | 
						|
  Rot3 prior_rotation = Rot3::Quaternion(initial_state(6), initial_state(3),
 | 
						|
                                         initial_state(4), initial_state(5));
 | 
						|
  Point3 prior_point(initial_state.head<3>());
 | 
						|
  Pose3 prior_pose(prior_rotation, prior_point);
 | 
						|
  Vector3 prior_velocity(initial_state.tail<3>());
 | 
						|
  imuBias::ConstantBias prior_imu_bias;  // assume zero initial bias
 | 
						|
 | 
						|
  Values initial_values;
 | 
						|
  int correction_count = 0;
 | 
						|
  initial_values.insert(X(correction_count), prior_pose);
 | 
						|
  initial_values.insert(V(correction_count), prior_velocity);
 | 
						|
  initial_values.insert(B(correction_count), prior_imu_bias);
 | 
						|
 | 
						|
  // Assemble prior noise model and add it the graph.`
 | 
						|
  auto pose_noise_model = noiseModel::Diagonal::Sigmas(
 | 
						|
      (Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5)
 | 
						|
          .finished());  // rad,rad,rad,m, m, m
 | 
						|
  auto velocity_noise_model = noiseModel::Isotropic::Sigma(3, 0.1);  // m/s
 | 
						|
  auto bias_noise_model = noiseModel::Isotropic::Sigma(6, 1e-3);
 | 
						|
 | 
						|
  // Add all prior factors (pose, velocity, bias) to the graph.
 | 
						|
  NonlinearFactorGraph* graph = new NonlinearFactorGraph();
 | 
						|
  graph->addPrior(X(correction_count), prior_pose, pose_noise_model);
 | 
						|
  graph->addPrior(V(correction_count), prior_velocity, velocity_noise_model);
 | 
						|
  graph->addPrior(B(correction_count), prior_imu_bias, bias_noise_model);
 | 
						|
 | 
						|
  auto p = imuParams();
 | 
						|
 | 
						|
  std::shared_ptr<PreintegrationType> preintegrated =
 | 
						|
      std::make_shared<PreintegratedImuMeasurements>(p, prior_imu_bias);
 | 
						|
 | 
						|
  assert(preintegrated);
 | 
						|
 | 
						|
  // Store previous state for imu integration and latest predicted outcome.
 | 
						|
  NavState prev_state(prior_pose, prior_velocity);
 | 
						|
  NavState prop_state = prev_state;
 | 
						|
  imuBias::ConstantBias prev_bias = prior_imu_bias;
 | 
						|
 | 
						|
  // Keep track of total error over the entire run as simple performance metric.
 | 
						|
  double current_position_error = 0.0, current_orientation_error = 0.0;
 | 
						|
 | 
						|
  double output_time = 0.0;
 | 
						|
  double dt = 0.005;  // The real system has noise, but here, results are nearly
 | 
						|
                      // exactly the same, so keeping this for simplicity.
 | 
						|
 | 
						|
  // All priors have been set up, now iterate through the data file.
 | 
						|
  while (file.good()) {
 | 
						|
    // Parse out first value
 | 
						|
    getline(file, value, ',');
 | 
						|
    int type = stoi(value.c_str());
 | 
						|
 | 
						|
    if (type == 0) {  // IMU measurement
 | 
						|
      Vector6 imu;
 | 
						|
      for (int i = 0; i < 5; ++i) {
 | 
						|
        getline(file, value, ',');
 | 
						|
        imu(i) = stof(value.c_str());
 | 
						|
      }
 | 
						|
      getline(file, value, '\n');
 | 
						|
      imu(5) = stof(value.c_str());
 | 
						|
 | 
						|
      // Adding the IMU preintegration.
 | 
						|
      preintegrated->integrateMeasurement(imu.head<3>(), imu.tail<3>(), dt);
 | 
						|
 | 
						|
    } else if (type == 1) {  // GPS measurement
 | 
						|
      Vector7 gps;
 | 
						|
      for (int i = 0; i < 6; ++i) {
 | 
						|
        getline(file, value, ',');
 | 
						|
        gps(i) = stof(value.c_str());
 | 
						|
      }
 | 
						|
      getline(file, value, '\n');
 | 
						|
      gps(6) = stof(value.c_str());
 | 
						|
 | 
						|
      correction_count++;
 | 
						|
 | 
						|
      // Adding IMU factor and GPS factor and optimizing.
 | 
						|
      auto preint_imu =
 | 
						|
          dynamic_cast<const PreintegratedImuMeasurements&>(*preintegrated);
 | 
						|
      ImuFactor imu_factor(X(correction_count - 1), V(correction_count - 1),
 | 
						|
                           X(correction_count), V(correction_count),
 | 
						|
                           B(correction_count - 1), preint_imu);
 | 
						|
      graph->add(imu_factor);
 | 
						|
      imuBias::ConstantBias zero_bias(Vector3(0, 0, 0), Vector3(0, 0, 0));
 | 
						|
      graph->add(BetweenFactor<imuBias::ConstantBias>(
 | 
						|
          B(correction_count - 1), B(correction_count), zero_bias,
 | 
						|
          bias_noise_model));
 | 
						|
 | 
						|
      auto correction_noise = noiseModel::Isotropic::Sigma(3, 1.0);
 | 
						|
      GPSFactor gps_factor(X(correction_count),
 | 
						|
                           Point3(gps(0),   // N,
 | 
						|
                                  gps(1),   // E,
 | 
						|
                                  gps(2)),  // D,
 | 
						|
                           correction_noise);
 | 
						|
      graph->add(gps_factor);
 | 
						|
 | 
						|
      // Now optimize and compare results.
 | 
						|
      prop_state = preintegrated->predict(prev_state, prev_bias);
 | 
						|
      initial_values.insert(X(correction_count), prop_state.pose());
 | 
						|
      initial_values.insert(V(correction_count), prop_state.v());
 | 
						|
      initial_values.insert(B(correction_count), prev_bias);
 | 
						|
 | 
						|
      Values result;
 | 
						|
 | 
						|
      if (use_isam) {
 | 
						|
        isam2->update(*graph, initial_values);
 | 
						|
        isam2->update();
 | 
						|
        result = isam2->calculateEstimate();
 | 
						|
 | 
						|
        // reset the graph
 | 
						|
        graph->resize(0);
 | 
						|
        initial_values.clear();
 | 
						|
 | 
						|
      } else {
 | 
						|
        LevenbergMarquardtOptimizer optimizer(*graph, initial_values);
 | 
						|
        result = optimizer.optimize();
 | 
						|
      }
 | 
						|
 | 
						|
      // Overwrite the beginning of the preintegration for the next step.
 | 
						|
      prev_state = NavState(result.at<Pose3>(X(correction_count)),
 | 
						|
                            result.at<Vector3>(V(correction_count)));
 | 
						|
      prev_bias = result.at<imuBias::ConstantBias>(B(correction_count));
 | 
						|
 | 
						|
      // Reset the preintegration object.
 | 
						|
      preintegrated->resetIntegrationAndSetBias(prev_bias);
 | 
						|
 | 
						|
      // Print out the position and orientation error for comparison.
 | 
						|
      Vector3 gtsam_position = prev_state.pose().translation();
 | 
						|
      Vector3 position_error = gtsam_position - gps.head<3>();
 | 
						|
      current_position_error = position_error.norm();
 | 
						|
 | 
						|
      Quaternion gtsam_quat = prev_state.pose().rotation().toQuaternion();
 | 
						|
      Quaternion gps_quat(gps(6), gps(3), gps(4), gps(5));
 | 
						|
      Quaternion quat_error = gtsam_quat * gps_quat.inverse();
 | 
						|
      quat_error.normalize();
 | 
						|
      Vector3 euler_angle_error(quat_error.x() * 2, quat_error.y() * 2,
 | 
						|
                                quat_error.z() * 2);
 | 
						|
      current_orientation_error = euler_angle_error.norm();
 | 
						|
 | 
						|
      // display statistics
 | 
						|
      cout << "Position error:" << current_position_error << "\t "
 | 
						|
           << "Angular error:" << current_orientation_error << "\n";
 | 
						|
 | 
						|
      fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
 | 
						|
              output_time, gtsam_position(0), gtsam_position(1),
 | 
						|
              gtsam_position(2), gtsam_quat.x(), gtsam_quat.y(), gtsam_quat.z(),
 | 
						|
              gtsam_quat.w(), gps(0), gps(1), gps(2), gps_quat.x(),
 | 
						|
              gps_quat.y(), gps_quat.z(), gps_quat.w());
 | 
						|
 | 
						|
      output_time += 1.0;
 | 
						|
 | 
						|
    } else {
 | 
						|
      cerr << "ERROR parsing file\n";
 | 
						|
      return 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  fclose(fp_out);
 | 
						|
  cout << "Complete, results written to " << output_filename << "\n\n";
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 |