189 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file SmartRangeFactor.h
 | 
						|
 *
 | 
						|
 * @brief A smart factor for range-only SLAM that does initialization and marginalization
 | 
						|
 *
 | 
						|
 * @date Sep 10, 2012
 | 
						|
 * @author Alex Cunningham
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam_unstable/dllexport.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactor.h>
 | 
						|
#include <gtsam/inference/Key.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
 | 
						|
#include <list>
 | 
						|
#include <map>
 | 
						|
#include <stdexcept>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
#include <optional>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/**
 | 
						|
 * Smart factor for range SLAM
 | 
						|
 * @ingroup slam
 | 
						|
 */
 | 
						|
class SmartRangeFactor: public NoiseModelFactor {
 | 
						|
 protected:
 | 
						|
  struct Circle2 {
 | 
						|
    Circle2(const Point2& p, double r) :
 | 
						|
        center(p), radius(r) {
 | 
						|
    }
 | 
						|
    Point2 center;
 | 
						|
    double radius;
 | 
						|
  };
 | 
						|
 | 
						|
  typedef SmartRangeFactor This;
 | 
						|
 | 
						|
  std::vector<double> measurements_;  ///< Range measurements
 | 
						|
  double variance_;  ///< variance on noise
 | 
						|
 | 
						|
 public:
 | 
						|
 | 
						|
  // Provide access to the Matrix& version of unwhitenedError
 | 
						|
  using NoiseModelFactor::unwhitenedError;
 | 
						|
 | 
						|
  /** Default constructor: don't use directly */
 | 
						|
  SmartRangeFactor() {
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Constructor
 | 
						|
   * @param s standard deviation of range measurement noise
 | 
						|
   */
 | 
						|
  explicit SmartRangeFactor(double s) :
 | 
						|
      NoiseModelFactor(noiseModel::Isotropic::Sigma(1, s)), variance_(s * s) {
 | 
						|
  }
 | 
						|
 | 
						|
  ~SmartRangeFactor() override {
 | 
						|
  }
 | 
						|
 | 
						|
  /// Add a range measurement to a pose with given key.
 | 
						|
  void addRange(Key key, double measuredRange) {
 | 
						|
    if(std::find(keys_.begin(), keys_.end(), key) != keys_.end()) {
 | 
						|
      throw std::invalid_argument(
 | 
						|
          "SmartRangeFactor::addRange: adding duplicate measurement for key.");
 | 
						|
    }
 | 
						|
    keys_.push_back(key);
 | 
						|
    measurements_.push_back(measuredRange);
 | 
						|
    size_t n = keys_.size();
 | 
						|
    // Since we add the errors, the noise variance adds
 | 
						|
    noiseModel_ = noiseModel::Isotropic::Variance(1, n * variance_);
 | 
						|
  }
 | 
						|
 | 
						|
  // Testable
 | 
						|
 | 
						|
  /** print */
 | 
						|
  void print(const std::string& s = "",
 | 
						|
      const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
 | 
						|
    std::cout << s << "SmartRangeFactor with " << size() << " measurements\n";
 | 
						|
    NoiseModelFactor::print(s);
 | 
						|
  }
 | 
						|
 | 
						|
  /** Check if two factors are equal */
 | 
						|
  bool equals(const NonlinearFactor& f, double tol = 1e-9) const override {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // factor interface
 | 
						|
 | 
						|
  /**
 | 
						|
   * Triangulate a point from at least three pose-range pairs
 | 
						|
   * Checks for best pair that includes first point
 | 
						|
   * Raise runtime_error if not well defined.
 | 
						|
   */
 | 
						|
  Point2 triangulate(const Values& x) const {
 | 
						|
    // create n circles corresponding to measured range around each pose
 | 
						|
    std::list<Circle2> circles;
 | 
						|
    size_t n = size();
 | 
						|
    for (size_t j = 0; j < n; j++) {
 | 
						|
      const Pose2& pose = x.at<Pose2>(keys_[j]);
 | 
						|
      circles.push_back(Circle2(pose.translation(), measurements_[j]));
 | 
						|
    }
 | 
						|
 | 
						|
    Circle2 circle1 = circles.front();
 | 
						|
    std::optional<Point2> best_fh;
 | 
						|
    std::optional<Circle2> bestCircle2 = std::nullopt;  // fixes issue #38
 | 
						|
 | 
						|
    // loop over all circles
 | 
						|
    for (const Circle2& it : circles) {
 | 
						|
      // distance between circle centers.
 | 
						|
      double d = distance2(circle1.center, it.center);
 | 
						|
      if (d < 1e-9)
 | 
						|
        continue;  // skip circles that are in the same location
 | 
						|
      // Find f and h, the intersection points in normalized circles
 | 
						|
      std::optional<Point2> fh = circleCircleIntersection(
 | 
						|
          circle1.radius / d, it.radius / d);
 | 
						|
      // Check if this pair is better by checking h = fh->y()
 | 
						|
      // if h is large, the intersections are well defined.
 | 
						|
      if (fh && (!best_fh || fh->y() > best_fh->y())) {
 | 
						|
        best_fh = fh;
 | 
						|
        bestCircle2 = it;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // use best fh to find actual intersection points
 | 
						|
    if (bestCircle2 && best_fh) {
 | 
						|
      auto bestCircleCenter = bestCircle2->center;
 | 
						|
      std::list<Point2> intersections =
 | 
						|
          circleCircleIntersection(circle1.center, bestCircleCenter, best_fh);
 | 
						|
 | 
						|
      // pick winner based on other measurements
 | 
						|
      double error1 = 0, error2 = 0;
 | 
						|
      Point2 p1 = intersections.front(), p2 = intersections.back();
 | 
						|
      for (const Circle2& it : circles) {
 | 
						|
        error1 += distance2(it.center, p1);
 | 
						|
        error2 += distance2(it.center, p2);
 | 
						|
      }
 | 
						|
      return (error1 < error2) ? p1 : p2;
 | 
						|
    } else {
 | 
						|
      throw std::runtime_error("triangulate failed");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Error function *without* the NoiseModel, \f$ z-h(x) \f$.
 | 
						|
   */
 | 
						|
  Vector unwhitenedError(const Values& x, OptionalMatrixVecType H = nullptr) const override {
 | 
						|
    size_t n = size();
 | 
						|
    if (n < 3) {
 | 
						|
      if (H) {
 | 
						|
        // set Jacobians to zero for n<3
 | 
						|
        for (size_t j = 0; j < n; j++)
 | 
						|
          (*H)[j] = Matrix::Zero(3, 1);
 | 
						|
      }
 | 
						|
      return Z_1x1;
 | 
						|
    } else {
 | 
						|
      Vector error = Z_1x1;
 | 
						|
 | 
						|
      // triangulate to get the optimized point
 | 
						|
      // TODO(dellaert): Should we have a (better?) variant that does this in relative coordinates ?
 | 
						|
      Point2 optimizedPoint = triangulate(x);
 | 
						|
 | 
						|
      // TODO(dellaert): triangulation should be followed by an optimization given poses
 | 
						|
      // now evaluate the errors between predicted and measured range
 | 
						|
      for (size_t j = 0; j < n; j++) {
 | 
						|
        const Pose2& pose = x.at<Pose2>(keys_[j]);
 | 
						|
        if (H)
 | 
						|
          // also calculate 1*3 derivative for each of the n poses
 | 
						|
          error[0] += pose.range(optimizedPoint, (*H)[j]) - measurements_[j];
 | 
						|
        else
 | 
						|
          error[0] += pose.range(optimizedPoint) - measurements_[j];
 | 
						|
      }
 | 
						|
      return error;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// @return a deep copy of this factor
 | 
						|
  gtsam::NonlinearFactor::shared_ptr clone() const override {
 | 
						|
    return std::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
        gtsam::NonlinearFactor::shared_ptr(new This(*this)));
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // \namespace gtsam
 | 
						|
 |