77 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Matlab
		
	
	
| % This script tests the math of correcting joint marginals with root
 | |
| % shortcuts, using only simple matrix math and avoiding any GTSAM calls.
 | |
| % It turns out that it is not possible to correct root shortcuts for
 | |
| % joinoint marginals, thus actual_ij_1_2__ will not equal
 | |
| % expected_ij_1_2__.
 | |
| 
 | |
| %% Check that we get the BayesTree structure we are expecting
 | |
| fg = gtsam.SymbolicFactorGraph;
 | |
| fg.push_factor(1,3,7,10);
 | |
| fg.push_factor(2,5,7,10);
 | |
| fg.push_factor(3,4,7,8);
 | |
| fg.push_factor(5,6,7,8);
 | |
| fg.push_factor(7,8,9,10);
 | |
| fg.push_factor(10,11);
 | |
| fg.push_factor(11);
 | |
| fg.push_factor(7,8,9);
 | |
| fg.push_factor(7,8);
 | |
| fg.push_factor(5,6);
 | |
| fg.push_factor(3,4);
 | |
| 
 | |
| bt = gtsam.SymbolicMultifrontalSolver(fg).eliminate;
 | |
| bt
 | |
| 
 | |
| %%
 | |
| %  P( 10 11)
 | |
| %    P( 7 8 9 | 10)
 | |
| %      P( 5 6 | 7 8 10)
 | |
| %        P( 2 | 5 7 10)
 | |
| %      P( 3 4 | 7 8 10)
 | |
| %        P( 1 | 3 7 10)
 | |
| A = [ ...
 | |
|   % 1  2  3  4  5  6  7  8  9 10 11  b
 | |
|     1  0  2  0  0  0  3  0  0  4  0  5
 | |
|     0  6  0  0  7  0  8  0  0  9  0 10
 | |
|     0  0 11 12  0  0 13 14  0 15  0 16
 | |
|     0  0  0  0 17 18 19 20  0 21  0 22
 | |
|     0  0  0  0  0  0 23 24 25 26  0 27
 | |
|     0  0  0  0  0  0  0  0  0 28 29 30
 | |
|     0  0  0  0  0  0  0  0  0  0 31 32
 | |
|     0  0  0  0  0  0 33 34 35  0  0 36
 | |
|     0  0  0  0  0  0 37 38  0  0  0 39
 | |
|     0  0  0  0 40 41  0  0  0  0  0 42
 | |
|     0  0 43 44  0  0  0  0  0  0  0 45
 | |
|     %0  0  0  0 46  0  0  0  0  0  0 47
 | |
|     %0  0 48  0  0  0  0  0  0  0  0 49
 | |
|     ];
 | |
| 
 | |
| % Compute shortcuts
 | |
| shortcut3_7__10_11 = shortcut(A, [3,7], [10,11]);
 | |
| shortcut5_7__10_11 = shortcut(A, [5,7], [10,11]);
 | |
| 
 | |
| % Factor into pieces
 | |
| % Factor p(5,7|10,11) into p(5|7,10,11) p(7|10,11)
 | |
| [ si_si__sij_R, si_sij__R ] = eliminate(shortcut3_7__10_11, [3]);
 | |
| [ sj_sj__sij_R, sj_sij__R ] = eliminate(shortcut5_7__10_11, [5]);
 | |
| 
 | |
| % Get root marginal
 | |
| R__ = A([6,7], :);
 | |
| 
 | |
| % Get clique conditionals
 | |
| i_1__3_7_10 = A(1, :);
 | |
| j_2__5_7_10 = A(2, :);
 | |
| 
 | |
| % Check
 | |
| expected_ij_1_2__ = shortcut(A, [1,2], [])
 | |
| 
 | |
| % Compute joint
 | |
| ij_1_2_3_5_7_10_11 = [
 | |
|     i_1__3_7_10
 | |
|     j_2__5_7_10
 | |
|     si_si__sij_R
 | |
|     sj_sj__sij_R
 | |
|     si_sij__R
 | |
|     R__
 | |
|     ];
 | |
| actual_ij_1_2__ = shortcut(ij_1_2_3_5_7_10_11, [1,2], [])
 |