89 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| % 
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief A simple visual SLAM example for structure from motion
 | |
| % @author Duy-Nguyen Ta
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| %% Create a triangle target, just 3 points on a plane
 | |
| r = 10;
 | |
| points = {};
 | |
| for j=1:3
 | |
|     theta = (j-1)*2*pi/3;
 | |
|     points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
 | |
| end
 | |
| 
 | |
| %% Create camera poses on a circle around the triangle
 | |
| nCameras = 6;
 | |
| height = 10;
 | |
| r = 30;
 | |
| poses = {};
 | |
| for i=1:nCameras
 | |
|     theta = (i-1)*2*pi/nCameras;
 | |
|     t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
 | |
|     camera = gtsamSimpleCamera_lookat(t, gtsamPoint3(), gtsamPoint3([0,0,1]'), gtsamCal3_S2())
 | |
|     poses{i} = camera.pose();
 | |
| end
 | |
| 
 | |
| %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
 | |
| graph = visualSLAMGraph;
 | |
| 
 | |
| %% Add factors for all measurements
 | |
| K = gtsamCal3_S2(500,500,0,640/2,480/2);
 | |
| measurementNoiseSigma=1; % in pixels
 | |
| measurementNoise = gtsamSharedNoiseModel_Sigma(2,measurementNoiseSigma);
 | |
| for i=1:nCameras
 | |
|     camera = gtsamSimpleCamera(K,poses{i});
 | |
|     for j=1:3
 | |
|         zij = camera.project(points{j}); % you can add noise here if desired
 | |
|         graph.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
 | |
|     end
 | |
| end
 | |
| 
 | |
| %% Add Gaussian priors for 3 points to constrain the system
 | |
| pointPriorNoise  = gtsamSharedNoiseModel_Sigma(3,0.1);
 | |
| for j=1:3
 | |
|     graph.addPointPrior(symbol('l',j), points{j}, pointPriorNoise);
 | |
| end
 | |
| 
 | |
| %% Print the graph
 | |
| graph.print(sprintf('\nFactor graph:\n'));
 | |
| 
 | |
| %% Initialize to noisy poses and points
 | |
| initialEstimate = visualSLAMValues;
 | |
| for i=1:size(poses,2)
 | |
|     initialEstimate.insertPose(symbol('x',i), poses{i});
 | |
| end
 | |
| for j=1:size(points,2)
 | |
|     initialEstimate.insertPoint(symbol('l',j), points{j});
 | |
| end
 | |
| initialEstimate.print(sprintf('\nInitial estimate:\n  '));
 | |
| 
 | |
| %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | |
| result = graph.optimize(initialEstimate);
 | |
| result.print(sprintf('\nFinal result:\n  '));
 | |
| 
 | |
| %% Plot results with covariance ellipses
 | |
| marginals = graph.marginals(result);
 | |
| figure(1);clf
 | |
| hold on;
 | |
| for j=1:size(points,2)
 | |
|     P = marginals.marginalCovariance(symbol('l',j));
 | |
|     point_j = result.point(symbol('l',j));
 | |
| 	plot3(point_j.x, point_j.y, point_j.z,'marker','o');
 | |
|     covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
 | |
| end
 | |
| 
 | |
| for i=1:size(poses,2)
 | |
|     P = marginals.marginalCovariance(symbol('x',i))
 | |
|     pose_i = result.pose(symbol('x',i))
 | |
|     plotPose3(pose_i,P,10);
 | |
| end
 | |
| axis equal
 | |
| 
 |