62 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    SymbolicSequentialSolver.h
 | |
|  * @brief   
 | |
|  * @author  Richard Roberts
 | |
|  * @created Oct 21, 2010
 | |
|  */
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/inference/GenericSequentialSolver.h>
 | |
| #include <gtsam/inference/SymbolicFactorGraph.h>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| // The base class provides all of the needed functionality
 | |
| typedef GenericSequentialSolver<IndexFactor> SymbolicSequentialSolver;
 | |
| 
 | |
| //class SymbolicSequentialSolver : GenericSequentialSolver<IndexFactor> {
 | |
| //
 | |
| //protected:
 | |
| //
 | |
| //  typedef GenericSequentialSolver<IndexFactor> Base;
 | |
| //
 | |
| //public:
 | |
| //
 | |
| //  SymbolicSequentialSolver(const FactorGraph<IndexFactor>& factorGraph);
 | |
| //
 | |
| //  /**
 | |
| //   * Eliminate the factor graph sequentially.  Uses a column elimination tree
 | |
| //   * to recursively eliminate.
 | |
| //   */
 | |
| //  BayesNet<IndexConditional>::shared_ptr eliminate() const;
 | |
| //
 | |
| //  /**
 | |
| //   * Compute the marginal Gaussian density over a variable, by integrating out
 | |
| //   * all of the other variables.  This function returns the result as a factor.
 | |
| //   */
 | |
| //  IndexFactor::shared_ptr marginal(Index j) const;
 | |
| //
 | |
| //  /**
 | |
| //   * Compute the marginal joint over a set of variables, by integrating out
 | |
| //   * all of the other variables.  This function returns the result as an upper-
 | |
| //   * triangular R factor and right-hand-side, i.e. a GaussianBayesNet with
 | |
| //   * R*x = d.  To get a mean and covariance matrix, use jointStandard(...)
 | |
| //   */
 | |
| //  SymbolicFactorGraph::shared_ptr joint(const std::vector<Index>& js) const;
 | |
| //
 | |
| //};
 | |
| 
 | |
| }
 | |
| 
 |