81 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Matlab
		
	
	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
% GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
% Atlanta, Georgia 30332-0415
 | 
						|
% All Rights Reserved
 | 
						|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
% 
 | 
						|
% See LICENSE for the license information
 | 
						|
%
 | 
						|
% @brief Simple robotics example using the pre-built planar SLAM domain
 | 
						|
% @author Alex Cunningham
 | 
						|
% @author Frank Dellaert
 | 
						|
% @author Chris Beall
 | 
						|
% @author Vadim Indelman
 | 
						|
% @author Can Erdogan
 | 
						|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
 | 
						|
%% Assumptions
 | 
						|
%  - All values are axis aligned
 | 
						|
%  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | 
						|
%  - We have full odometry for measurements
 | 
						|
%  - The robot is on a grid, moving 2 meters each step
 | 
						|
 | 
						|
%% Create graph container and add factors to it
 | 
						|
graph = pose2SLAM.Graph;
 | 
						|
 | 
						|
%% Add prior
 | 
						|
import gtsam.*
 | 
						|
% gaussian for prior
 | 
						|
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
 | 
						|
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
 | 
						|
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
 | 
						|
 | 
						|
%% Add odometry
 | 
						|
import gtsam.*
 | 
						|
% general noisemodel for odometry
 | 
						|
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
 | 
						|
odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
 | 
						|
graph.addRelativePose(1, 2, odometry, odometryNoise);
 | 
						|
graph.addRelativePose(2, 3, odometry, odometryNoise);
 | 
						|
 | 
						|
%% Add measurements
 | 
						|
import gtsam.*
 | 
						|
% general noisemodel for measurements
 | 
						|
measurementNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
 | 
						|
 | 
						|
% print
 | 
						|
graph.print('full graph');
 | 
						|
 | 
						|
%% Initialize to noisy points
 | 
						|
import gtsam.*
 | 
						|
initialEstimate = pose2SLAM.Values;
 | 
						|
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
 | 
						|
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
 | 
						|
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
 | 
						|
 | 
						|
initialEstimate.print('initial estimate');
 | 
						|
 | 
						|
%% set up solver, choose ordering and optimize
 | 
						|
%params = NonlinearOptimizationParameters_newDecreaseThresholds(1e-15, 1e-15);
 | 
						|
%
 | 
						|
%ord = graph.orderingCOLAMD(initialEstimate);
 | 
						|
%
 | 
						|
%result = pose2SLAMOptimizer(graph,initialEstimate,ord,params);                      
 | 
						|
%result.print('final result');
 | 
						|
 | 
						|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | 
						|
result = graph.optimize(initialEstimate,1);
 | 
						|
result.print('final result');
 | 
						|
 | 
						|
%% Get the corresponding dense matrix
 | 
						|
ord = graph.orderingCOLAMD(result);
 | 
						|
gfg = graph.linearize(result,ord);
 | 
						|
denseAb = gfg.denseJacobian;
 | 
						|
 | 
						|
%% Get sparse matrix A and RHS b
 | 
						|
IJS = gfg.sparseJacobian_();
 | 
						|
Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:));
 | 
						|
A = Ab(:,1:end-1);
 | 
						|
b = full(Ab(:,end));
 | 
						|
spy(A);
 |