290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file     ActiveSetSolver-inl.h
 | 
						|
 * @brief    Implmentation of ActiveSetSolver.
 | 
						|
 * @author   Ivan Dario Jimenez
 | 
						|
 * @author   Duy Nguyen Ta
 | 
						|
 * @date     2/11/16
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
// Convenient macros to reduce syntactic noise. undef later.
 | 
						|
#define Template template <class PROBLEM, class POLICY, class INITSOLVER>
 | 
						|
#define This ActiveSetSolver<PROBLEM, POLICY, INITSOLVER>
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
 | 
						|
 * If some inactive inequality constraints complain about the full step (alpha = 1),
 | 
						|
 * we have to adjust alpha to stay within the inequality constraints' feasible regions.
 | 
						|
 *
 | 
						|
 * For each inactive inequality j:
 | 
						|
 *  - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
 | 
						|
 *  - We want: aj'*(xk + alpha*p) - bj <= 0
 | 
						|
 *  - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
 | 
						|
 *  it's good!
 | 
						|
 *  - We only care when aj'*p > 0. In this case, we need to choose alpha so that
 | 
						|
 *  aj'*xk + alpha*aj'*p - bj <= 0  --> alpha <= (bj - aj'*xk) / (aj'*p)
 | 
						|
 *  We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
 | 
						|
 *
 | 
						|
 * We want the minimum of all those alphas among all inactive inequality.
 | 
						|
 */
 | 
						|
Template boost::tuple<double, int> This::computeStepSize(
 | 
						|
    const InequalityFactorGraph& workingSet, const VectorValues& xk,
 | 
						|
    const VectorValues& p, const double& maxAlpha) const {
 | 
						|
  double minAlpha = maxAlpha;
 | 
						|
  int closestFactorIx = -1;
 | 
						|
  for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
 | 
						|
    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
 | 
						|
    double b = factor->getb()[0];
 | 
						|
    // only check inactive factors
 | 
						|
    if (!factor->active()) {
 | 
						|
      // Compute a'*p
 | 
						|
      double aTp = factor->dotProductRow(p);
 | 
						|
 | 
						|
      // Check if  a'*p >0. Don't care if it's not.
 | 
						|
      if (aTp <= 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Compute a'*xk
 | 
						|
      double aTx = factor->dotProductRow(xk);
 | 
						|
 | 
						|
      // alpha = (b - a'*xk) / (a'*p)
 | 
						|
      double alpha = (b - aTx) / aTp;
 | 
						|
      // We want the minimum of all those max alphas
 | 
						|
      if (alpha < minAlpha) {
 | 
						|
        closestFactorIx = factorIx;
 | 
						|
        minAlpha = alpha;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return boost::make_tuple(minAlpha, closestFactorIx);
 | 
						|
}
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/*
 | 
						|
 * The goal of this function is to find currently active inequality constraints
 | 
						|
 * that violate the condition to be active. The one that violates the condition
 | 
						|
 * the most will be removed from the active set. See Nocedal06book, pg 469-471
 | 
						|
 *
 | 
						|
 * Find the BAD active inequality that pulls x strongest to the wrong direction
 | 
						|
 * of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0)
 | 
						|
 *
 | 
						|
 * For active inequality constraints (those that are enforced as equality constraints
 | 
						|
 * in the current working set), we want lambda < 0.
 | 
						|
 * This is because:
 | 
						|
 *   - From the Lagrangian L = f - lambda*c, we know that the constraint force
 | 
						|
 *     is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay
 | 
						|
 *     on the constraint surface, the constraint force has to balance out with
 | 
						|
 *     other unconstrained forces that are pulling x towards the unconstrained
 | 
						|
 *     minimum point. The other unconstrained forces are pulling x toward (-\grad f),
 | 
						|
 *     hence the constraint force has to be exactly \grad f, so that the total
 | 
						|
 *     force is 0.
 | 
						|
 *   - We also know that  at the constraint surface c(x)=0, \grad c points towards + (>= 0),
 | 
						|
 *     while we are solving for - (<=0) constraint.
 | 
						|
 *   - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction
 | 
						|
 *     i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied.
 | 
						|
 *     That means we want lambda < 0.
 | 
						|
 *   - This is because when the constrained force pulls x towards the infeasible region (+),
 | 
						|
 *     the unconstrained force is pulling x towards the opposite direction into
 | 
						|
 *     the feasible region (again because the total force has to be 0 to make x stay still)
 | 
						|
 *     So we can drop this constraint to have a lower error but feasible solution.
 | 
						|
 *
 | 
						|
 * In short, active inequality constraints with lambda > 0 are BAD, because they
 | 
						|
 * violate the condition to be active.
 | 
						|
 *
 | 
						|
 * And we want to remove the worst one with the largest lambda from the active set.
 | 
						|
 *
 | 
						|
 */
 | 
						|
Template int This::identifyLeavingConstraint(
 | 
						|
    const InequalityFactorGraph& workingSet,
 | 
						|
    const VectorValues& lambdas) const {
 | 
						|
  int worstFactorIx = -1;
 | 
						|
  // preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
 | 
						|
  // inactive or a good inequality constraint, so we don't care!
 | 
						|
  double maxLambda = 0.0;
 | 
						|
  for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
 | 
						|
    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
 | 
						|
    if (factor->active()) {
 | 
						|
      double lambda = lambdas.at(factor->dualKey())[0];
 | 
						|
      if (lambda > maxLambda) {
 | 
						|
        worstFactorIx = factorIx;
 | 
						|
        maxLambda = lambda;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return worstFactorIx;
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
Template JacobianFactor::shared_ptr This::createDualFactor(
 | 
						|
    Key key, const InequalityFactorGraph& workingSet,
 | 
						|
    const VectorValues& delta) const {
 | 
						|
  // Transpose the A matrix of constrained factors to have the jacobian of the
 | 
						|
  // dual key
 | 
						|
  TermsContainer Aterms = collectDualJacobians<LinearEquality>(
 | 
						|
      key, problem_.equalities, equalityVariableIndex_);
 | 
						|
  TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
 | 
						|
      key, workingSet, inequalityVariableIndex_);
 | 
						|
  Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
 | 
						|
                AtermsInequalities.end());
 | 
						|
 | 
						|
  // Collect the gradients of unconstrained cost factors to the b vector
 | 
						|
  if (Aterms.size() > 0) {
 | 
						|
    Vector b = problem_.costGradient(key, delta);
 | 
						|
    // to compute the least-square approximation of dual variables
 | 
						|
    return boost::make_shared<JacobianFactor>(Aterms, b);
 | 
						|
  } else {
 | 
						|
    return boost::make_shared<JacobianFactor>();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/*  This function will create a dual graph that solves for the
 | 
						|
 *  lagrange multipliers for the current working set.
 | 
						|
 *  You can use lagrange multipliers as a necessary condition for optimality.
 | 
						|
 *  The factor graph that is being solved is f' = -lambda * g'
 | 
						|
 *  where f is the optimized function and g is the function resulting from
 | 
						|
 *  aggregating the working set.
 | 
						|
 *  The lambdas give you information about the feasibility of a constraint.
 | 
						|
 *  if lambda < 0  the constraint is Ok
 | 
						|
 *  if lambda = 0  you are on the constraint
 | 
						|
 *  if lambda > 0  you are violating the constraint.
 | 
						|
 */
 | 
						|
Template GaussianFactorGraph::shared_ptr This::buildDualGraph(
 | 
						|
    const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
 | 
						|
  GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
 | 
						|
  for (Key key : constrainedKeys_) {
 | 
						|
    // Each constrained key becomes a factor in the dual graph
 | 
						|
    JacobianFactor::shared_ptr dualFactor =
 | 
						|
        createDualFactor(key, workingSet, delta);
 | 
						|
    if (!dualFactor->empty()) dualGraph->push_back(dualFactor);
 | 
						|
  }
 | 
						|
  return dualGraph;
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
Template GaussianFactorGraph
 | 
						|
This::buildWorkingGraph(const InequalityFactorGraph& workingSet,
 | 
						|
                        const VectorValues& xk) const {
 | 
						|
  GaussianFactorGraph workingGraph;
 | 
						|
  workingGraph.push_back(POLICY::buildCostFunction(problem_, xk));
 | 
						|
  workingGraph.push_back(problem_.equalities);
 | 
						|
  for (const LinearInequality::shared_ptr& factor : workingSet)
 | 
						|
    if (factor->active()) workingGraph.push_back(factor);
 | 
						|
  return workingGraph;
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
Template typename This::State This::iterate(
 | 
						|
    const typename This::State& state) const {
 | 
						|
  // Algorithm 16.3 from Nocedal06book.
 | 
						|
  // Solve with the current working set eqn 16.39, but instead of solving for p
 | 
						|
  // solve for x
 | 
						|
  GaussianFactorGraph workingGraph =
 | 
						|
      buildWorkingGraph(state.workingSet, state.values);
 | 
						|
  VectorValues newValues = workingGraph.optimize();
 | 
						|
  // If we CAN'T move further
 | 
						|
  // if p_k = 0 is the original condition, modified by Duy to say that the state
 | 
						|
  // update is zero.
 | 
						|
  if (newValues.equals(state.values, 1e-7)) {
 | 
						|
    // Compute lambda from the dual graph
 | 
						|
    GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
 | 
						|
        newValues);
 | 
						|
    VectorValues duals = dualGraph->optimize();
 | 
						|
    int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
 | 
						|
    // If all inequality constraints are satisfied: We have the solution!!
 | 
						|
    if (leavingFactor < 0) {
 | 
						|
      return State(newValues, duals, state.workingSet, true,
 | 
						|
          state.iterations + 1);
 | 
						|
    } else {
 | 
						|
      // Inactivate the leaving constraint
 | 
						|
      InequalityFactorGraph newWorkingSet = state.workingSet;
 | 
						|
      newWorkingSet.at(leavingFactor)->inactivate();
 | 
						|
      return State(newValues, duals, newWorkingSet, false,
 | 
						|
          state.iterations + 1);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If we CAN make some progress, i.e. p_k != 0
 | 
						|
    // Adapt stepsize if some inactive constraints complain about this move
 | 
						|
    double alpha;
 | 
						|
    int factorIx;
 | 
						|
    VectorValues p = newValues - state.values;
 | 
						|
    boost::tie(alpha, factorIx) = // using 16.41
 | 
						|
        computeStepSize(state.workingSet, state.values, p, POLICY::maxAlpha);
 | 
						|
    // also add to the working set the one that complains the most
 | 
						|
    InequalityFactorGraph newWorkingSet = state.workingSet;
 | 
						|
    if (factorIx >= 0)
 | 
						|
      newWorkingSet.at(factorIx)->activate();
 | 
						|
    // step!
 | 
						|
    newValues = state.values + alpha * p;
 | 
						|
    return State(newValues, state.duals, newWorkingSet, false,
 | 
						|
        state.iterations + 1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
Template InequalityFactorGraph This::identifyActiveConstraints(
 | 
						|
    const InequalityFactorGraph& inequalities,
 | 
						|
    const VectorValues& initialValues, const VectorValues& duals,
 | 
						|
    bool useWarmStart) const {
 | 
						|
  InequalityFactorGraph workingSet;
 | 
						|
  for (const LinearInequality::shared_ptr& factor : inequalities) {
 | 
						|
    LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
 | 
						|
    if (useWarmStart && duals.size() > 0) {
 | 
						|
      if (duals.exists(workingFactor->dualKey())) workingFactor->activate();
 | 
						|
      else workingFactor->inactivate();
 | 
						|
    } else {
 | 
						|
      double error = workingFactor->error(initialValues);
 | 
						|
      // Safety guard. This should not happen unless users provide a bad init
 | 
						|
      if (error > 0) throw InfeasibleInitialValues();
 | 
						|
      if (std::abs(error) < 1e-7)
 | 
						|
        workingFactor->activate();
 | 
						|
      else
 | 
						|
        workingFactor->inactivate();
 | 
						|
    }
 | 
						|
    workingSet.push_back(workingFactor);
 | 
						|
  }
 | 
						|
  return workingSet;
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
Template std::pair<VectorValues, VectorValues> This::optimize(
 | 
						|
    const VectorValues& initialValues, const VectorValues& duals,
 | 
						|
    bool useWarmStart) const {
 | 
						|
  // Initialize workingSet from the feasible initialValues
 | 
						|
  InequalityFactorGraph workingSet = identifyActiveConstraints(
 | 
						|
      problem_.inequalities, initialValues, duals, useWarmStart);
 | 
						|
  State state(initialValues, duals, workingSet, false, 0);
 | 
						|
 | 
						|
  /// main loop of the solver
 | 
						|
  while (!state.converged) state = iterate(state);
 | 
						|
 | 
						|
  return std::make_pair(state.values, state.duals);
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
Template std::pair<VectorValues, VectorValues> This::optimize() const {
 | 
						|
  INITSOLVER initSolver(problem_);
 | 
						|
  VectorValues initValues = initSolver.solve();
 | 
						|
  return optimize(initValues);
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#undef Template
 | 
						|
#undef This |