247 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file LinearizedFactor.cpp
 | 
						|
 * @brief A dummy factor that allows a linear factor to act as a nonlinear factor
 | 
						|
 * @author Alex Cunningham
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam_unstable/nonlinear/LinearizedFactor.h>
 | 
						|
#include <boost/format.hpp>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
LinearizedGaussianFactor::LinearizedGaussianFactor(
 | 
						|
    const GaussianFactor::shared_ptr& gaussian, const Values& lin_points)
 | 
						|
: NonlinearFactor(gaussian->keys())
 | 
						|
{
 | 
						|
  // Extract the keys and linearization points
 | 
						|
  for(const Key& key: gaussian->keys()) {
 | 
						|
    // extract linearization point
 | 
						|
    assert(lin_points.exists(key));
 | 
						|
    this->lin_points_.insert(key, lin_points.at(key));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// LinearizedJacobianFactor
 | 
						|
/* ************************************************************************* */
 | 
						|
LinearizedJacobianFactor::LinearizedJacobianFactor() {
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
LinearizedJacobianFactor::LinearizedJacobianFactor(
 | 
						|
    const JacobianFactor::shared_ptr& jacobian, const Values& lin_points)
 | 
						|
: Base(jacobian, lin_points) {
 | 
						|
 | 
						|
  // Create the dims array
 | 
						|
  size_t *dims = (size_t *)alloca(sizeof(size_t) * (jacobian->size() + 1));
 | 
						|
  size_t index = 0;
 | 
						|
  for(JacobianFactor::const_iterator iter = jacobian->begin(); iter != jacobian->end(); ++iter) {
 | 
						|
    dims[index++] = jacobian->getDim(iter);
 | 
						|
  }
 | 
						|
  dims[index] = 1;
 | 
						|
 | 
						|
  // Update the BlockInfo accessor
 | 
						|
  Ab_ = VerticalBlockMatrix(dims, dims+jacobian->size()+1, jacobian->rows());
 | 
						|
  // Get the Ab matrix from the Jacobian factor, with any covariance baked in
 | 
						|
  Ab_.matrix() = jacobian->augmentedJacobian();
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void LinearizedJacobianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
 | 
						|
 | 
						|
  std::cout << s << std::endl;
 | 
						|
 | 
						|
  std::cout << "Nonlinear Keys: ";
 | 
						|
  for(const Key& key: this->keys())
 | 
						|
    std::cout << keyFormatter(key) << " ";
 | 
						|
  std::cout << std::endl;
 | 
						|
 | 
						|
  for(const_iterator key=begin(); key!=end(); ++key)
 | 
						|
    std::cout << boost::format("A[%1%]=\n")%keyFormatter(*key) << A(*key) << std::endl;
 | 
						|
  std::cout << "b=\n" << b() << std::endl;
 | 
						|
 | 
						|
  lin_points_.print("Linearization Point: ");
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool LinearizedJacobianFactor::equals(const NonlinearFactor& expected, double tol) const {
 | 
						|
 | 
						|
  const This *e = dynamic_cast<const This*> (&expected);
 | 
						|
  if (e) {
 | 
						|
 | 
						|
    Matrix thisMatrix = this->Ab_.range(0, Ab_.nBlocks());
 | 
						|
    Matrix rhsMatrix = e->Ab_.range(0, Ab_.nBlocks());
 | 
						|
 | 
						|
    return Base::equals(expected, tol)
 | 
						|
        && lin_points_.equals(e->lin_points_, tol)
 | 
						|
        && equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
double LinearizedJacobianFactor::error(const Values& c) const {
 | 
						|
  Vector errorVector = error_vector(c);
 | 
						|
  return 0.5 * errorVector.dot(errorVector);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
boost::shared_ptr<GaussianFactor>
 | 
						|
LinearizedJacobianFactor::linearize(const Values& c) const {
 | 
						|
 | 
						|
  // Create the 'terms' data structure for the Jacobian constructor
 | 
						|
  std::vector<std::pair<Key, Matrix> > terms;
 | 
						|
  for(Key key: keys()) {
 | 
						|
    terms.push_back(std::make_pair(key, this->A(key)));
 | 
						|
  }
 | 
						|
 | 
						|
  // compute rhs
 | 
						|
  Vector b = -error_vector(c);
 | 
						|
 | 
						|
  return boost::shared_ptr<GaussianFactor>(new JacobianFactor(terms, b, noiseModel::Unit::Create(dim())));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
Vector LinearizedJacobianFactor::error_vector(const Values& c) const {
 | 
						|
 | 
						|
  Vector errorVector = -b();
 | 
						|
 | 
						|
  for(Key key: this->keys()) {
 | 
						|
    const Value& newPt = c.at(key);
 | 
						|
    const Value& linPt = lin_points_.at(key);
 | 
						|
    Vector d = linPt.localCoordinates_(newPt);
 | 
						|
    const constABlock A = this->A(key);
 | 
						|
    errorVector += A * d;
 | 
						|
  }
 | 
						|
 | 
						|
  return errorVector;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// LinearizedHessianFactor
 | 
						|
/* ************************************************************************* */
 | 
						|
LinearizedHessianFactor::LinearizedHessianFactor() {
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
LinearizedHessianFactor::LinearizedHessianFactor(
 | 
						|
    const HessianFactor::shared_ptr& hessian, const Values& lin_points)
 | 
						|
    : Base(hessian, lin_points), info_(hessian->info()) {}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void LinearizedHessianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
 | 
						|
 | 
						|
  std::cout << s << std::endl;
 | 
						|
 | 
						|
  std::cout << "Nonlinear Keys: ";
 | 
						|
  for(const Key& key: this->keys())
 | 
						|
    std::cout << keyFormatter(key) << " ";
 | 
						|
  std::cout << std::endl;
 | 
						|
 | 
						|
  gtsam::print(Matrix(info_.selfadjointView()), "Ab^T * Ab: ");
 | 
						|
 | 
						|
  lin_points_.print("Linearization Point: ");
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool LinearizedHessianFactor::equals(const NonlinearFactor& expected, double tol) const {
 | 
						|
 | 
						|
  const This *e = dynamic_cast<const This*> (&expected);
 | 
						|
  if (e) {
 | 
						|
 | 
						|
    Matrix thisMatrix = this->info_.selfadjointView();
 | 
						|
    thisMatrix(thisMatrix.rows()-1, thisMatrix.cols()-1) = 0.0;
 | 
						|
    Matrix rhsMatrix = e->info_.selfadjointView();
 | 
						|
    rhsMatrix(rhsMatrix.rows()-1, rhsMatrix.cols()-1) = 0.0;
 | 
						|
 | 
						|
    return Base::equals(expected, tol)
 | 
						|
        && lin_points_.equals(e->lin_points_, tol)
 | 
						|
        && equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
double LinearizedHessianFactor::error(const Values& c) const {
 | 
						|
 | 
						|
  // Construct an error vector in key-order from the Values
 | 
						|
  Vector dx = Vector::Zero(dim());
 | 
						|
  size_t index = 0;
 | 
						|
  for(unsigned int i = 0; i < this->size(); ++i){
 | 
						|
    Key key = this->keys()[i];
 | 
						|
    const Value& newPt = c.at(key);
 | 
						|
    const Value& linPt = lin_points_.at(key);
 | 
						|
    dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
 | 
						|
    index += linPt.dim();
 | 
						|
  }
 | 
						|
 | 
						|
  // error 0.5*(f - 2*x'*g + x'*G*x)
 | 
						|
  double f = constantTerm();
 | 
						|
  double xtg = dx.dot(linearTerm());
 | 
						|
  double xGx = dx.transpose() * squaredTerm() * dx;
 | 
						|
 | 
						|
  return 0.5 * (f - 2.0 * xtg +  xGx);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
boost::shared_ptr<GaussianFactor>
 | 
						|
LinearizedHessianFactor::linearize(const Values& c) const {
 | 
						|
 | 
						|
  // Construct an error vector in key-order from the Values
 | 
						|
  Vector dx = Vector::Zero(dim());
 | 
						|
  size_t index = 0;
 | 
						|
  for(unsigned int i = 0; i < this->size(); ++i){
 | 
						|
    Key key = this->keys()[i];
 | 
						|
    const Value& newPt = c.at(key);
 | 
						|
    const Value& linPt = lin_points_.at(key);
 | 
						|
    dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
 | 
						|
    index += linPt.dim();
 | 
						|
  }
 | 
						|
 | 
						|
  // f2 = f1 - 2*dx'*g1 + dx'*G1*dx
 | 
						|
  //newInfo(this->size(), this->size())(0,0) += -2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | 
						|
  double f = constantTerm() - 2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm() * dx;
 | 
						|
 | 
						|
  // g2 = g1 - G1*dx
 | 
						|
  //newInfo.rangeColumn(0, this->size(), this->size(), 0) -= squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | 
						|
  Vector g = linearTerm() - squaredTerm() * dx;
 | 
						|
  std::vector<Vector> gs;
 | 
						|
  std::size_t offset = 0;
 | 
						|
  for(DenseIndex i = 0; i < info_.nBlocks()-1; ++i) {
 | 
						|
    const std::size_t dim = info_.getDim(i);
 | 
						|
    gs.push_back(g.segment(offset, dim));
 | 
						|
    offset += dim;
 | 
						|
  }
 | 
						|
 | 
						|
  // G2 = G1
 | 
						|
  // Do Nothing
 | 
						|
  std::vector<Matrix> Gs;
 | 
						|
  for(DenseIndex i = 0; i < info_.nBlocks()-1; ++i) {
 | 
						|
    Gs.push_back(info_.diagonalBlock(i));
 | 
						|
    for(DenseIndex j = i + 1; j < info_.nBlocks()-1; ++j) {
 | 
						|
      Gs.push_back(info_.aboveDiagonalBlock(i, j));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a Hessian Factor from the modified info matrix
 | 
						|
  //return boost::shared_ptr<GaussianFactor>(new HessianFactor(js, newInfo));
 | 
						|
  return boost::shared_ptr<GaussianFactor>(new HessianFactor(keys(), Gs, gs, f));
 | 
						|
}
 | 
						|
 | 
						|
} // \namespace aspn
 |