92 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file InverseKinematicsExampleExpressions.cpp
 | |
|  * @brief Implement inverse kinematics on a three-link arm using expressions.
 | |
|  * @date April 15, 2019
 | |
|  * @author Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/nonlinear/ExpressionFactorGraph.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/nonlinear/Marginals.h>
 | |
| #include <gtsam/nonlinear/expressions.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/expressions.h>
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Scalar multiplication of a vector, with derivatives.
 | |
| inline Vector3 scalarMultiply(const double& s, const Vector3& v,
 | |
|                               OptionalJacobian<3, 1> Hs,
 | |
|                               OptionalJacobian<3, 3> Hv) {
 | |
|   if (Hs) *Hs = v;
 | |
|   if (Hv) *Hv = s * I_3x3;
 | |
|   return s * v;
 | |
| }
 | |
| 
 | |
| // Expression version of scalar product, using above function.
 | |
| inline Vector3_ operator*(const Double_& s, const Vector3_& v) {
 | |
|   return Vector3_(&scalarMultiply, s, v);
 | |
| }
 | |
| 
 | |
| // Expression version of Pose2::Expmap
 | |
| inline Pose2_ Expmap(const Vector3_& xi) { return Pose2_(&Pose2::Expmap, xi); }
 | |
| 
 | |
| // Main function
 | |
| int main(int argc, char** argv) {
 | |
|   // Three-link planar manipulator specification.
 | |
|   const double L1 = 3.5, L2 = 3.5, L3 = 2.5;    // link lengths
 | |
|   const Pose2 sXt0(0, L1 + L2 + L3, M_PI / 2);  // end-effector pose at rest
 | |
|   const Vector3 xi1(0, 0, 1), xi2(L1, 0, 1),
 | |
|       xi3(L1 + L2, 0, 1);  // screw axes at rest
 | |
| 
 | |
|   // Create Expressions for unknowns
 | |
|   using symbol_shorthand::Q;
 | |
|   Double_ q1(Q(1)), q2(Q(2)), q3(Q(3));
 | |
| 
 | |
|   // Forward kinematics expression as product of exponentials
 | |
|   Pose2_ l1Zl1 = Expmap(q1 * Vector3_(xi1));
 | |
|   Pose2_ l2Zl2 = Expmap(q2 * Vector3_(xi2));
 | |
|   Pose2_ l3Zl3 = Expmap(q3 * Vector3_(xi3));
 | |
|   Pose2_ forward = compose(compose(l1Zl1, l2Zl2), compose(l3Zl3, Pose2_(sXt0)));
 | |
| 
 | |
|   // Create a factor graph with a a single expression factor.
 | |
|   ExpressionFactorGraph graph;
 | |
|   Pose2 desiredEndEffectorPose(3, 2, 0);
 | |
|   auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
 | |
|   graph.addExpressionFactor(forward, desiredEndEffectorPose, model);
 | |
| 
 | |
|   // Create initial estimate
 | |
|   Values initial;
 | |
|   initial.insert(Q(1), 0.1);
 | |
|   initial.insert(Q(2), 0.2);
 | |
|   initial.insert(Q(3), 0.3);
 | |
|   initial.print("\nInitial Estimate:\n");  // print
 | |
|   GTSAM_PRINT(forward.value(initial));
 | |
| 
 | |
|   // Optimize the initial values using a Levenberg-Marquardt nonlinear optimizer
 | |
|   LevenbergMarquardtParams params;
 | |
|   params.setlambdaInitial(1e6);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, initial, params);
 | |
|   Values result = optimizer.optimize();
 | |
|   result.print("Final Result:\n");
 | |
| 
 | |
|   GTSAM_PRINT(forward.value(result));
 | |
| 
 | |
|   return 0;
 | |
| }
 |